文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于单光子雪崩二极管 (SPAD) 传感应用的磁性碳纳米纤维垫。

Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications.

机构信息

Ecole Nationale d'Ingénieurs de Sfax, Laboratory LGME, University of Sfax, Sfax 3038, Tunisia.

Junior Research Group "Nanomaterials", Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany.

出版信息

Sensors (Basel). 2021 Nov 26;21(23):7873. doi: 10.3390/s21237873.


DOI:10.3390/s21237873
PMID:34883875
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659674/
Abstract

Electrospinning enables simple and cost-effective production of magnetic nanofibers by adding nanoparticles to a polymer solution. In order to increase the electrical conductivity of such nanofibers, the carbonization process is crucial. In this study, the chemical and morphological properties of magnetic nanofiber mats prepared from polyacrylonitrile (PAN)/magnetite were investigated. In our previous studies, PAN/magnetite nanofiber mats were carbonized at 500 °C, 600 °C, and 800 °C. Here, PAN/magnetite nanofiber mats were carbonized at 1000 °C. The surface morphology of these PAN/magnetite nanofiber mats is not significantly different from nanofiber mats thermally treated at 800 °C and have remained relatively flexible at 1000 °C, which can be advantageous for various application fields. The addition of nanoparticles increased the average fiber diameter compared to pure PAN nanofiber mats and improved the dimensional stability during thermal processes. The high conductivity, the high magnetization properties, as well as shielding against electromagnetic interference of such carbonized nanofibers can be proposed for use in single photon avalanche diode (SPAD), where these properties are advantageous.

摘要

静电纺丝通过向聚合物溶液中添加纳米颗粒,实现了磁性纳米纤维的简单且经济高效的生产。为了提高这种纳米纤维的导电性,碳化过程至关重要。在这项研究中,研究了由聚丙烯腈 (PAN)/磁铁矿制备的磁性纳米纤维垫的化学和形态特性。在我们之前的研究中,PAN/磁铁矿纳米纤维垫在 500°C、600°C 和 800°C 下碳化。在这里,PAN/磁铁矿纳米纤维垫在 1000°C 下碳化。这些 PAN/磁铁矿纳米纤维垫的表面形貌与在 800°C 下热处理的纳米纤维垫没有明显区别,并且在 1000°C 下仍然保持相对柔韧性,这对于各种应用领域可能是有利的。与纯 PAN 纳米纤维垫相比,纳米颗粒的添加增加了平均纤维直径,并提高了热过程中的尺寸稳定性。这种碳化纳米纤维的高导电性、高磁化性能以及对电磁干扰的屏蔽作用,可以用于单光子雪崩二极管 (SPAD),这些性质在其中具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/0e5338f477a7/sensors-21-07873-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/d73c18dccce6/sensors-21-07873-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/6cd421673045/sensors-21-07873-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/d9e8713f92eb/sensors-21-07873-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/5d7f163f05e2/sensors-21-07873-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/fc2d776df5be/sensors-21-07873-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/b03cef38d4cb/sensors-21-07873-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/d654c81ca248/sensors-21-07873-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/0983250d9255/sensors-21-07873-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/0e5338f477a7/sensors-21-07873-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/d73c18dccce6/sensors-21-07873-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/6cd421673045/sensors-21-07873-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/d9e8713f92eb/sensors-21-07873-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/5d7f163f05e2/sensors-21-07873-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/fc2d776df5be/sensors-21-07873-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/b03cef38d4cb/sensors-21-07873-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/d654c81ca248/sensors-21-07873-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/0983250d9255/sensors-21-07873-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f7c/8659674/0e5338f477a7/sensors-21-07873-g009.jpg

相似文献

[1]
Magnetic Carbon Nanofiber Mats for Prospective Single Photon Avalanche Diode (SPAD) Sensing Applications.

Sensors (Basel). 2021-11-26

[2]
Magnetic Properties of Electrospun Magnetic Nanofiber Mats after Stabilization and Carbonization.

Materials (Basel). 2020-3-27

[3]
Antibacterial properties of in situ and surface functionalized impregnation of silver sulfadiazine in polyacrylonitrile nanofiber mats.

Int J Nanomedicine. 2019-4-16

[4]
Fixing PAN Nanofiber Mats during Stabilization for Carbonization and Creating Novel Metal/Carbon Composites.

Polymers (Basel). 2018-7-4

[5]
Electrospinning Nanofiber Mats with Magnetite Nanoparticles Using Various Needle-Based Techniques.

Polymers (Basel). 2022-1-28

[6]
Characterization of polyacrylonitrile based carbon nanofiber mats via electron beam processing.

J Nanosci Nanotechnol. 2012-7

[7]
Metallic Supports Accelerate Carbonization and Improve Morphological Stability of Polyacrylonitrile Nanofibers during Heat Treatment.

Materials (Basel). 2021-8-19

[8]
Graphene Nanoplatelet (GNPs) Doped Carbon Nanofiber (CNF) System: Effect of GNPs on the Graphitic Structure of Creep Stress and Non-Creep Stress Stabilized Polyacrylonitrile (PAN).

Nanomaterials (Basel). 2020-2-18

[9]
Chemical and Morphological Transition of Poly(acrylonitrile)/Poly(vinylidene Fluoride) Blend Nanofibers during Oxidative Stabilization and Incipient Carbonization.

Nanomaterials (Basel). 2020-6-21

[10]
Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring.

Materials (Basel). 2015-10-14

引用本文的文献

[1]
A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications.

Membranes (Basel). 2023-10-13

[2]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[3]
Numerical Modeling of Damage Caused by Seawater Exposure on Mechanical Strength in Fiber-Reinforced Polymer Composites.

Polymers (Basel). 2022-9-22

本文引用的文献

[1]
Textile-Based Sensors for Biosignal Detection and Monitoring.

Sensors (Basel). 2021-9-9

[2]
Metallic Supports Accelerate Carbonization and Improve Morphological Stability of Polyacrylonitrile Nanofibers during Heat Treatment.

Materials (Basel). 2021-8-19

[3]
Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine-A Review.

Polymers (Basel). 2021-6-15

[4]
Neuro-Inspired Signal Processing in Ferromagnetic Nanofibers.

Biomimetics (Basel). 2021-5-26

[5]
Analytical Evaluation of Signal-to-Noise Ratios for Avalanche- and Single-Photon Avalanche Diodes.

Sensors (Basel). 2021-4-20

[6]
Nonclassical Attack on a Quantum Key Distribution System.

Entropy (Basel). 2021-4-23

[7]
Electrospun Nanofiber Mats for Filtering Applications-Technology, Structure and Materials.

Polymers (Basel). 2021-4-22

[8]
Electrospun Carbon Nanofibers from Biomass and Biomass Blends-Current Trends.

Polymers (Basel). 2021-3-29

[9]
On the reliability of highly magnified micrographs for structural analysis in materials science.

Sci Rep. 2020-9-7

[10]
Chemical and Morphological Transition of Poly(acrylonitrile)/Poly(vinylidene Fluoride) Blend Nanofibers during Oxidative Stabilization and Incipient Carbonization.

Nanomaterials (Basel). 2020-6-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索