Suppr超能文献

使用深度强化学习进行异构网络中的节能和吞吐量的多目标优化。

Multi-Objective Optimization of Energy Saving and Throughput in Heterogeneous Networks Using Deep Reinforcement Learning.

机构信息

Department of Computer Engineering, Gachon University, Seongnam 13120, Korea.

出版信息

Sensors (Basel). 2021 Nov 27;21(23):7925. doi: 10.3390/s21237925.

Abstract

Wireless networking using GHz or THz spectra has encouraged mobile service providers to deploy small cells to improve link quality and cell capacity using mmWave backhaul links. As green networking for less CO emission is mandatory to confront global climate change, we need energy efficient network management for such denser small-cell heterogeneous networks (HetNets) that already suffer from observable power consumption. We establish a dual-objective optimization model that minimizes energy consumption by switching off unused small cells while maximizing user throughput, which is a mixed integer linear problem (MILP). Recently, the deep reinforcement learning (DRL) algorithm has been applied to many NP-hard problems of the wireless networking field, such as radio resource allocation, association and power saving, which can induce a near-optimal solution with fast inference time as an online solution. In this paper, we investigate the feasibility of the DRL algorithm for a dual-objective problem, energy efficient routing and throughput maximization, which has not been explored before. We propose a proximal policy (PPO)-based multi-objective algorithm using the actor-critic model that is realized as an optimistic linear support framework in which the PPO algorithm searches for feasible solutions iteratively. Experimental results show that our algorithm can achieve throughput and energy savings comparable to the CPLEX.

摘要

利用 GHz 或太赫兹频谱的无线网络促使移动服务提供商部署小型基站,通过毫米波回程链路来提高链路质量和小区容量。由于减少 CO 排放的绿色网络对于应对全球气候变化是强制性的,因此我们需要对这种已经存在可观测功耗的更密集的小型小区异构网络(HetNet)进行节能的网络管理。我们建立了一个双目标优化模型,通过关闭未使用的小型小区来最小化能耗,同时最大化用户吞吐量,这是一个混合整数线性问题(MILP)。最近,深度强化学习(DRL)算法已被应用于无线网络领域的许多 NP 难问题,例如无线电资源分配、关联和节能,它可以在快速推断时间内作为在线解决方案诱导出接近最优的解决方案。在本文中,我们研究了 DRL 算法在双目标问题(节能路由和吞吐量最大化)中的可行性,这在以前尚未得到探索。我们提出了一种基于近端策略优化(PPO)的多目标算法,使用了作为乐观线性支持框架的 Actor-Critic 模型,其中 PPO 算法通过迭代搜索可行解。实验结果表明,我们的算法可以实现与 CPLEX 相当的吞吐量和节能效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e707/8659752/bae2bcf35bdc/sensors-21-07925-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验