Chandrasekaran Senthil Kumar, Rajasekaran Vijay Anand
Department of Information Technology, School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology, Vellore, India.
Sci Rep. 2025 Jul 9;15(1):24682. doi: 10.1038/s41598-025-07917-3.
This study presents a simulation-based approach to improving energy efficiency and security in IoT-based smart agriculture systems. The suggested architecture combines a new Blended Clustering Energy Efficient Routing (BCEER) protocol with an authentication mechanism based on Physical Unclonable Functions (PUFs) to respond to the main issues in resource-limited, sensor-oriented settings. BCEER maximizes cluster head selection using adaptive energy thresholds to minimize communication overhead and ensure extended network lifetime. Moreover, authentication based on PUF provides hardware-level identity authentication through challenge-response pairs, without demanding heavy cryptography computation, to improve security. For safe signal processing, polynomial approximation techniques were analyzed for sign function approximation, and error analysis indicated improving accuracy as the approximation degree grows. The findings show that the hybrid method enhances energy distribution, enhances authentication, and provides computationally efficient signal processing, making the system relevant for efficient and secure large-scale deployment in intelligent farming IoT networks.
本研究提出了一种基于仿真的方法,以提高基于物联网的智能农业系统的能源效率和安全性。所建议的架构将一种新的混合聚类节能路由(BCEER)协议与基于物理不可克隆函数(PUF)的认证机制相结合,以应对资源受限、面向传感器的环境中的主要问题。BCEER使用自适应能量阈值最大化簇头选择,以最小化通信开销并确保延长网络寿命。此外,基于PUF的认证通过挑战-响应对提供硬件级身份认证,而无需进行繁重的密码学计算,以提高安全性。为了实现安全的信号处理,分析了多项式逼近技术用于符号函数逼近,误差分析表明随着逼近度的增加精度有所提高。研究结果表明,这种混合方法增强了能量分配,增强了认证,并提供了计算高效的信号处理,使得该系统适用于智能农业物联网网络中的高效和安全大规模部署。