Macromolecular Chemistry, Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
Physical Chemistry, Institute of Chemistry, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
Int J Mol Sci. 2021 Nov 24;22(23):12679. doi: 10.3390/ijms222312679.
Carbonyl-centered hydrogen bonds with various strength and geometries are often exploited in materials to embed dynamic and adaptive properties, with the use of thiocarbonyl groups as hydrogen-bonding acceptors remaining only scarcely investigated. We herein report a comparative study of C2=O and C2=S barbiturates in view of their differing hydrogen bonds, using the 5,5-disubstituted barbiturate and the thiobarbiturate as model compounds. Owing to the different hydrogen-bonding strength and geometries of C2=O vs. C2=S, we postulate the formation of different hydrogen-bonding patterns in C2=S in comparison to the C2=O in conventional barbiturates. To study differences in their association in solution, we conducted concentration- and temperature-dependent NMR experiments to compare their association constants, Gibbs free energy of association , and the coalescence behavior of the N-H‧‧‧S=C bonded assemblies. In Langmuir films, the introduction of C2=S suppressed 2D crystallization when comparing and using Brewster angle microscopy, also revealing a significant deviation in morphology. When embedded into a hydrophobic polymer such as polyisobutylene, a largely different rheological behavior was observed for the barbiturate-bearing compared to the thiobarbiturate-bearing polymers, indicative of a stronger hydrogen bonding in the thioanalogue . We therefore prove that H-bonds, when affixed to a polymer, here the thiobarbiturate moieties in can reinforce the nonpolar PIB matrix even better, thus indicating the formation of stronger H-bonds among the thiobarbiturates in polymers in contrast to the effects observed in solution.
羰基中心的氢键具有各种强度和几何形状,常被用于材料中以嵌入动态和自适应特性,而使用硫羰基作为氢键受体的应用仍鲜有研究。我们在此报告了 C2=O 和 C2=S 巴比妥酸酯的比较研究,鉴于它们不同的氢键,使用 5,5-二取代巴比妥酸 和硫代巴比妥酸作为模型化合物。由于 C2=O 与 C2=S 的氢键强度和几何形状不同,我们假设在 C2=S 中形成了与传统巴比妥酸酯中 C2=O 不同的氢键模式。为了研究它们在溶液中缔合的差异,我们进行了浓度和温度依赖的 NMR 实验,以比较它们的缔合常数、缔合吉布斯自由能 和 N-H‧‧‧S=C 键合组装体的均合行为。在 Langmuir 膜中,与 相比,当引入 C2=S 时, 抑制了 2D 结晶,使用布鲁斯特角显微镜也揭示了形态上的显著偏差。当嵌入疏水性聚合物(如聚异丁烯)中时,与含有硫代巴比妥酸酯的 相比,含有巴比妥酸酯的 聚合物表现出大不相同的流变行为,这表明硫代类似物中的氢键更强 。因此,我们证明了当氢键固定在聚合物上时,这里的硫代巴比妥酸部分在 中可以更好地增强非极性 PIB 基质,从而表明与在溶液中观察到的效果相比,聚合物中的硫代巴比妥酸盐之间形成了更强的氢键。