Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France.
Molecules. 2021 Nov 30;26(23):7273. doi: 10.3390/molecules26237273.
Due to their very poor prognosis and a fatal outcome, secondary brain tumors are one of the biggest challenges in oncology today. From the point of view of the early diagnosis of these brain micro- and macro-tumors, the sensitivity and specificity of the diagnostic tools constitute an obstacle. Molecular imaging, such as Positron Emission Tomography (PET), is a promising technique but remains limited in the search for cerebral localizations, given the commercially available radiotracers. Indeed, the [F]FDG PET remains constrained by the physiological fixation of the cerebral cortex, which hinders the visualization of cerebral metastases. Tumor angiogenesis is recognized as a crucial phenomenon in the progression of malignant tumors and is correlated with overexpression of the neuropilin-1 (NRP-1) receptor. Here, we describe the synthesis and the photophysical properties of the new gallium-68 radiolabeled peptide to target NRP-1. The KDKPPR peptide was coupled with gallium-68 anchored into a bifunctional NODAGA chelating agent, as well as Cy5 for fluorescence detection. The Cy5 absorbance spectra did not change, whereas the molar extinction coefficient (ε) decreased drastically. An enhancement of the fluorescence quantum yield (φ) could be observed due to the better water solubility of Cy5. [Ga]Ga-NODAGA-K(Cy5)DKPPR was radiosynthesized efficiently, presented hydrophilic properties (log D = -1.86), and had high in vitro stability (>120 min). The molecular affinity and the cytotoxicity of this new chelated radiotracer were evaluated in vitro on endothelial cells (HUVEC) and MDA-MB-231 cancer cells (hormone-independent and triple-negative line) and in vivo on a brain model of metastasis in a nude rat using the MDA-MB-231 cell line. No in vitro toxicity has been observed. The in vivo preliminary experiments showed promising results, with a high contrast between the healthy brain and metastatic foci for [Ga]Ga-NODAGA-K(Cy5)DKPPR.
由于其预后极差且结局致命,继发性脑肿瘤是当今肿瘤学面临的最大挑战之一。从这些脑微瘤和巨瘤的早期诊断角度来看,诊断工具的灵敏度和特异性构成了一个障碍。分子成像,如正电子发射断层扫描(PET),是一种很有前途的技术,但由于商业上可用的放射性示踪剂,在寻找脑部定位方面仍受到限制。事实上,[F]FDG PET 仍然受到大脑皮层生理固定的限制,这阻碍了脑转移的可视化。肿瘤血管生成被认为是恶性肿瘤进展中的关键现象,并且与神经纤毛蛋白-1(NRP-1)受体的过度表达相关。在这里,我们描述了新的镓-68 放射性标记肽靶向 NRP-1 的合成和光物理性质。KDKPPR 肽与镓-68 结合,锚定在双功能 NODAGA 螯合剂中,并与 Cy5 结合用于荧光检测。Cy5 的吸收光谱没有变化,而摩尔消光系数(ε)急剧下降。由于 Cy5 的水溶性更好,可以观察到荧光量子产率(φ)的增强。[Ga]Ga-NODAGA-K(Cy5)DKPPR 可高效放射合成,具有亲水性(log D=-1.86),体外稳定性>120 分钟。在体外,我们评估了这种新螯合放射性示踪剂的分子亲和力和细胞毒性,分别在血管内皮细胞(HUVEC)和 MDA-MB-231 癌细胞(激素非依赖性和三阴性系)上,以及在裸鼠脑转移模型中进行体内研究。未观察到体外毒性。体内初步实验结果表明,[Ga]Ga-NODAGA-K(Cy5)DKPPR 具有很高的对比度,健康大脑和转移性病灶之间的对比度很高。