Suppr超能文献

抗流感病毒聚合酶酸性(PA)内切酶抑制剂的药物再利用。

Drug Repurposing for Influenza Virus Polymerase Acidic (PA) Endonuclease Inhibitor.

机构信息

School of Life Science, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China.

School of Life Science, Jilin Normal University, Siping 136000, China.

出版信息

Molecules. 2021 Dec 2;26(23):7326. doi: 10.3390/molecules26237326.

Abstract

Drug repurposing can quickly and effectively identify novel drug repurposing opportunities. The PA endonuclease catalytic site has recently become regarded as an attractive target for the screening of anti-influenza drugs. PA N-terminal (PA) inhibitor can inhibit the entire PA endonuclease activity. In this study, we screened the effectivity of PA inhibitors from the FDA database through in silico methods and in vitro experiments. PA and mutant PA-I38T were chosen as virtual screening targets for overcoming drug resistance. Gel-based PA endonuclease analysis determined that the drug lifitegrast can effectively inhibit PA and PA-I38T, when the IC is 32.82 ± 1.34 μM and 26.81 ± 1.2 μM, respectively. Molecular docking calculation showed that lifitegrast interacted with the residues around PA or PA-I38 T's active site, occupying the catalytic site pocket. Both PA/PA-I38T and lifitegrast can acquire good equilibrium in 100 ns molecular dynamic simulation. Because of these properties, lifitegrast, which can effectively inhibit PA endonuclease activity, was screened through in silico and in vitro research. This new research will be of significance in developing more effective and selective drugs for anti-influenza therapy.

摘要

药物重定位可以快速有效地确定新的药物重定位机会。PA 内切酶催化位点最近已被视为筛选抗流感药物的有吸引力的靶点。PA N 端(PA)抑制剂可抑制整个 PA 内切酶活性。在这项研究中,我们通过计算机模拟方法和体外实验筛选了来自 FDA 数据库的 PA 抑制剂的有效性。PA 和突变体 PA-I38T 被选为克服耐药性的虚拟筛选靶标。基于凝胶的 PA 内切酶分析确定药物利福昔明可有效抑制 PA 和 PA-I38T,IC 分别为 32.82±1.34 μM 和 26.81±1.2 μM。分子对接计算表明,利福昔明与 PA 或 PA-I38T 活性位点周围的残基相互作用,占据催化位点口袋。PA/PA-I38T 和利福昔明在 100 ns 分子动力学模拟中都能很好地达到平衡。由于这些特性,利福昔明可以通过计算机模拟和体外研究有效抑制 PA 内切酶活性。这项新的研究对于开发更有效和选择性的抗流感治疗药物具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/604c/8659148/33496d7fd3f4/molecules-26-07326-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验