NephroCare Portugal, Fresenius Medical Care Portugal, 1750-130 Lisboa, Portugal.
Clinical & Data Intelligence Systems-Advanced Analytics, Fresenius Medical Care, 26020 Vaiano Cremasco, Italy.
Int J Environ Res Public Health. 2021 Nov 24;18(23):12355. doi: 10.3390/ijerph182312355.
Vascular access surveillance of dialysis patients is a challenging task for clinicians. We derived and validated an arteriovenous fistula failure model (AVF-FM) based on machine learning. The AVF-FM is an XG-Boost algorithm aimed at predicting AVF failure within three months among in-centre dialysis patients. The model was trained in the derivation set (70% of initial cohort) by exploiting the information routinely collected in the Nephrocare European Clinical Database (EuCliD). Model performance was tested by concordance statistic and calibration charts in the remaining 30% of records. Features importance was computed using the SHAP method. We included 13,369 patients, overall. The Area Under the ROC Curve (AUC-ROC) of AVF-FM was 0.80 (95% CI 0.79-0.81). Model calibration showed excellent representation of observed failure risk. Variables associated with the greatest impact on risk estimates were previous history of AVF complications, followed by access recirculation and other functional parameters including metrics describing temporal pattern of dialysis dose, blood flow, dynamic venous and arterial pressures. The AVF-FM achieved good discrimination and calibration properties by combining routinely collected clinical and sensor data that require no additional effort by healthcare staff. Therefore, it can potentially enable risk-based personalization of AVF surveillance strategies.
血管通路监测是临床医生面临的一项挑战。我们基于机器学习开发并验证了一种动静脉瘘失功模型(AVF-FM)。AVF-FM 是一种 XG-Boost 算法,旨在预测中心透析患者中三个月内动静脉瘘失功。该模型在推导集(初始队列的 70%)中通过利用在 Nephrocare 欧洲临床数据库(EuCliD)中常规收集的信息进行训练。在剩余的 30%记录中,通过一致性统计和校准图来测试模型性能。使用 SHAP 方法计算特征重要性。我们共纳入了 13369 例患者。AVF-FM 的 ROC 曲线下面积(AUC-ROC)为 0.80(95%CI 0.79-0.81)。模型校准显示出对观察到的失功风险的出色代表性。对风险估计影响最大的变量是先前动静脉瘘并发症的病史,其次是通路再循环和其他功能参数,包括描述透析剂量、血流、动态静脉和动脉压力时间模式的指标。AVF-FM 通过结合常规收集的临床和传感器数据实现了良好的区分度和校准性能,这些数据不需要医护人员额外的努力。因此,它有可能实现基于风险的动静脉瘘监测策略的个性化。