Flenkenthaler Florian, Ländström Erik, Shashikadze Bachuki, Backman Mattias, Blutke Andreas, Philippou-Massier Julia, Renner Simone, Hrabe de Angelis Martin, Wanke Rüdiger, Blum Helmut, Arnold Georg J, Wolf Eckhard, Fröhlich Thomas
Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany.
German Center for Diabetes Research (DZD), Oberschleißheim, Germany.
Front Med (Lausanne). 2021 Nov 23;8:751277. doi: 10.3389/fmed.2021.751277. eCollection 2021.
Adipose tissue (AT) is no longer considered to be responsible for energy storage only but is now recognized as a major endocrine organ that is distributed across different parts of the body and is actively involved in regulatory processes controlling energy homeostasis. Moreover, AT plays a crucial role in the development of metabolic disease such as diabetes. Recent evidence has shown that adipokines have the ability to regulate blood glucose levels and improve metabolic homeostasis. While AT has been studied extensively in the context of type 2 diabetes, less is known about how different AT types are affected by absolute insulin deficiency in type 1 or permanent neonatal diabetes mellitus. Here, we analyzed visceral and subcutaneous AT in a diabetic, insulin-deficient pig model (MIDY) and wild-type (WT) littermate controls by RNA sequencing and quantitative proteomics. Multi-omics analysis indicates a depot-specific dysregulation of crucial metabolic pathways in MIDY AT samples. We identified key proteins involved in glucose uptake and downstream signaling, lipogenesis, lipolysis and β-oxidation to be differentially regulated between visceral and subcutaneous AT in response to insulin deficiency. Proteins related to glycogenolysis, pyruvate metabolism, TCA cycle and lipogenesis were increased in subcutaneous AT, whereas β-oxidation-related proteins were increased in visceral AT from MIDY pigs, pointing at a regionally different metabolic adaptation to master energy stress arising from diminished glucose utilization in MIDY AT. Chronic, absolute insulin deficiency and hyperglycemia revealed fat depot-specific signatures using multi-omics analysis. The generated datasets are a valuable resource for further comparative and translational studies in clinical diabetes research.
脂肪组织(AT)不再被认为仅仅负责能量储存,现在它被公认为是一个主要的内分泌器官,分布于身体的不同部位,并积极参与控制能量稳态的调节过程。此外,脂肪组织在糖尿病等代谢性疾病的发展中起着至关重要的作用。最近的证据表明,脂肪因子有调节血糖水平和改善代谢稳态的能力。虽然在2型糖尿病的背景下对脂肪组织进行了广泛研究,但对于1型糖尿病或永久性新生儿糖尿病中绝对胰岛素缺乏如何影响不同类型的脂肪组织,人们了解较少。在此,我们通过RNA测序和定量蛋白质组学分析了糖尿病胰岛素缺乏猪模型(MIDY)和野生型(WT)同窝对照的内脏和皮下脂肪组织。多组学分析表明,MIDY脂肪组织样本中关键代谢途径存在特定储存部位的失调。我们发现,在内脏和皮下脂肪组织中,参与葡萄糖摄取和下游信号传导、脂肪生成、脂肪分解和β氧化的关键蛋白质因胰岛素缺乏而受到不同调节。与糖原分解、丙酮酸代谢、三羧酸循环和脂肪生成相关的蛋白质在皮下脂肪组织中增加,而与β氧化相关的蛋白质在MIDY猪的内脏脂肪组织中增加,这表明在MIDY脂肪组织中,由于葡萄糖利用减少导致的主要能量应激存在区域不同的代谢适应性。慢性、绝对胰岛素缺乏和高血糖通过多组学分析揭示了脂肪储存部位特异性特征。所生成的数据集是临床糖尿病研究中进一步进行比较和转化研究的宝贵资源。