文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

同时激活 GLI1 和 Notch1 导致人类三阴性乳腺癌进展的种族差异。

Concomitant activation of GLI1 and Notch1 contributes to racial disparity of human triple negative breast cancer progression.

机构信息

Dept. of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, United States.

Department of Biology, MacMaster University, Hamilton, Canada.

出版信息

Elife. 2021 Dec 10;10:e70729. doi: 10.7554/eLife.70729.


DOI:10.7554/eLife.70729
PMID:34889737
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8664295/
Abstract

Mortality from triple negative breast cancer (TNBC) is significantly higher in African American (AA) women compared to White American (WA) women emphasizing ethnicity as a major risk factor; however, the molecular determinants that drive aggressive progression of AA-TNBC remain elusive. Here, we demonstrate for the first time that AA-TNBC cells are inherently aggressive, exhibiting elevated growth, migration, and cancer stem-like phenotype compared to WA-TNBC cells. Meta-analysis of RNA-sequencing data of multiple AA- and WA-TNBC cell lines shows enrichment of GLI1 and Notch1 pathways in AA-TNBC cells. Enrichment of GLI1 and Notch1 pathway genes was observed in AA-TNBC. In line with this observation, analysis of TCGA dataset reveals a positive correlation between GLI1 and Notch1 in AA-TNBC and a negative correlation in WA-TNBC. Increased nuclear localization and interaction between GLI1 and Notch1 is observed in AA-TNBC cells. Of importance, inhibition of GLI1 and Notch1 synergistically improves the efficacy of chemotherapy in AA-TNBC cells. Combined treatment of AA-TNBC-derived tumors with GANT61, DAPT, and doxorubicin/carboplatin results in significant tumor regression, and tumor-dissociated cells show mitigated migration, invasion, mammosphere formation, and CD44/CD24 population. Indeed, secondary tumors derived from triple-therapy-treated AA-TNBC tumors show diminished stem-like phenotype. Finally, we show that TNBC tumors from AA women express significantly higher level of GLI1 and Notch1 expression in comparison to TNBC tumors from WA women. This work sheds light on the racial disparity in TNBC, implicates the GLI1 and Notch1 axis as its functional mediators, and proposes a triple-combination therapy that can prove beneficial for AA-TNBC.

摘要

三阴性乳腺癌(TNBC)患者的死亡率在非裔美国女性(AA)中明显高于白种裔美国女性(WA),强调了种族是一个主要的危险因素;然而,导致 AA-TNBC 侵袭性进展的分子决定因素仍难以捉摸。在这里,我们首次证明 AA-TNBC 细胞具有内在的侵袭性,与 WA-TNBC 细胞相比,其表现出更高的生长、迁移和癌症干细胞样表型。对多个 AA 和 WA-TNBC 细胞系的 RNA-seq 数据进行的荟萃分析表明,AA-TNBC 细胞中 GLI1 和 Notch1 途径富集。在 AA-TNBC 中观察到 GLI1 和 Notch1 途径基因的富集。与这一观察结果一致,对 TCGA 数据集的分析表明,AA-TNBC 中 GLI1 和 Notch1 呈正相关,而 WA-TNBC 中呈负相关。在 AA-TNBC 细胞中观察到 GLI1 和 Notch1 的核定位增加和相互作用。重要的是,抑制 GLI1 和 Notch1 协同提高了 AA-TNBC 细胞化疗的疗效。用 GANT61、DAPT 和多柔比星/卡铂联合治疗 AA-TNBC 衍生的肿瘤导致显著的肿瘤消退,并且肿瘤相关细胞显示出迁移、侵袭、类器官形成和 CD44/CD24 群体的减轻。事实上,来自三重治疗处理的 AA-TNBC 肿瘤的次级肿瘤显示出减弱的干细胞样表型。最后,我们表明,与 WA 女性的 TNBC 肿瘤相比,AA 女性的 TNBC 肿瘤表达显著更高水平的 GLI1 和 Notch1。这项工作揭示了 TNBC 中的种族差异,暗示了 GLI1 和 Notch1 轴作为其功能介质,并提出了一种三重联合治疗方法,可能对 AA-TNBC 有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/fa42fd86de0f/elife-70729-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/ffac82049f12/elife-70729-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/e362e981cc1e/elife-70729-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/2ad14e804543/elife-70729-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/6f855d0986d9/elife-70729-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/5ec09ffd27f5/elife-70729-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/bee057b8a108/elife-70729-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/7f0e45c169b5/elife-70729-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/cdd9cab67f08/elife-70729-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/2233e36734d6/elife-70729-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/884c1407d1a8/elife-70729-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/28a3dc1a0b20/elife-70729-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/ba4dee625248/elife-70729-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/31a1e47103ca/elife-70729-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/7559d3aae481/elife-70729-fig6-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/9fd568648755/elife-70729-fig6-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/fbd5e292cebb/elife-70729-fig6-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/64db62e9b354/elife-70729-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/bb86d978768a/elife-70729-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/fa42fd86de0f/elife-70729-fig7-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/ffac82049f12/elife-70729-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/e362e981cc1e/elife-70729-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/2ad14e804543/elife-70729-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/6f855d0986d9/elife-70729-fig3-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/5ec09ffd27f5/elife-70729-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/bee057b8a108/elife-70729-fig4-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/7f0e45c169b5/elife-70729-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/cdd9cab67f08/elife-70729-fig5-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/2233e36734d6/elife-70729-fig5-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/884c1407d1a8/elife-70729-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/28a3dc1a0b20/elife-70729-fig6-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/ba4dee625248/elife-70729-fig6-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/31a1e47103ca/elife-70729-fig6-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/7559d3aae481/elife-70729-fig6-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/9fd568648755/elife-70729-fig6-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/fbd5e292cebb/elife-70729-fig6-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/64db62e9b354/elife-70729-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/bb86d978768a/elife-70729-fig7-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f645/8664295/fa42fd86de0f/elife-70729-fig7-figsupp2.jpg

相似文献

[1]
Concomitant activation of GLI1 and Notch1 contributes to racial disparity of human triple negative breast cancer progression.

Elife. 2021-12-10

[2]
Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway.

J Ethnopharmacol. 2022-1-30

[3]
c-Jun N-terminal kinase promotes stem cell phenotype in triple-negative breast cancer through upregulation of Notch1 via activation of c-Jun.

Oncogene. 2017-5-4

[4]
Outcome of African-American compared to White-American patients with early-stage breast cancer, stratified by phenotype.

Breast J. 2021-7

[5]
Racial Disparity and Triple-Negative Breast Cancer in African-American Women: A Multifaceted Affair between Obesity, Biology, and Socioeconomic Determinants.

Cancers (Basel). 2018-12-14

[6]
Inhibition of Notch1 reverses EMT and chemoresistance to cisplatin via direct downregulation of MCAM in triple-negative breast cancer cells.

Int J Cancer. 2020-7-15

[7]
Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells.

Breast Cancer. 2017-9

[8]
GLI1-targeting drugs induce replication stress and homologous recombination deficiency and synergize with PARP-targeted therapies in triple negative breast cancer cells.

Biochim Biophys Acta Mol Basis Dis. 2022-2-1

[9]
A novel role for KIFC1-MYH9 interaction in triple-negative breast cancer aggressiveness and racial disparity.

Cell Commun Signal. 2024-6-6

[10]
Additive Pharmacological Interaction between Cisplatin (CDDP) and Histone Deacetylase Inhibitors (HDIs) in MDA-MB-231 Triple Negative Breast Cancer (TNBC) Cells with Altered Notch1 Activity-An Isobolographic Analysis.

Int J Mol Sci. 2019-7-26

引用本文的文献

[1]
TRIM29 upregulation contributes to chemoresistance in triple negative breast cancer via modulating S100P-β-catenin axis.

Cell Commun Signal. 2025-5-26

[2]
Interactions between the tumor microbiota and breast cancer.

Front Cell Infect Microbiol. 2025-1-24

[3]
The TRIM37 variant rs57141087 contributes to triple-negative breast cancer outcomes in Black women.

EMBO Rep. 2025-1

[4]
LUCAT1-Mediated Competing Endogenous RNA (ceRNA) Network in Triple-Negative Breast Cancer.

Cells. 2024-11-19

[5]
Landmark Series: The Cancer Genome Atlas and the Study of Breast Cancer Disparities.

Ann Surg Oncol. 2023-10

[6]
Gut colonization with an obesity-associated enteropathogenic microbe modulates the premetastatic niches to promote breast cancer lung and liver metastasis.

Front Immunol. 2023

[7]
Concomitant analyses of intratumoral microbiota and genomic features reveal distinct racial differences in breast cancer.

NPJ Breast Cancer. 2023-1-26

[8]
Metformin Enhances the Anti-Cancer Efficacy of Sorafenib via Suppressing MAPK/ERK/Stat3 Axis in Hepatocellular Carcinoma.

Int J Mol Sci. 2022-7-22

[9]
Scalable multiplex co-fractionation/mass spectrometry platform for accelerated protein interactome discovery.

Nat Commun. 2022-7-13

本文引用的文献

[1]
A phase 1b study of the Notch inhibitor crenigacestat (LY3039478) in combination with other anticancer target agents (taladegib, LY3023414, or abemaciclib) in patients with advanced or metastatic solid tumors.

Invest New Drugs. 2021-8

[2]
Practical classification of triple-negative breast cancer: intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies.

NPJ Breast Cancer. 2020-10-16

[3]
NOTCH1 activation compensates BRCA1 deficiency and promotes triple-negative breast cancer formation.

Nat Commun. 2020-6-26

[4]
Enhanced immortalization, mutations and other biological drivers of breast invasive carcinoma in Black/African American patients.

Gene X. 2020-5-1

[5]
Racial differences in CD8 T cell infiltration in breast tumors from Black and White women.

Breast Cancer Res. 2020-6-9

[6]
Somatic mutations of triple-negative breast cancer: a comparison between Black and White women.

Breast Cancer Res Treat. 2020-7

[7]
Identification of Distinct Heterogenic Subtypes and Molecular Signatures Associated with African Ancestry in Triple Negative Breast Cancer Using Quantified Genetic Ancestry Models in Admixed Race Populations.

Cancers (Basel). 2020-5-13

[8]
Inhibition of Notch1 reverses EMT and chemoresistance to cisplatin via direct downregulation of MCAM in triple-negative breast cancer cells.

Int J Cancer. 2020-7-15

[9]
Serum exosomal-annexin A2 is associated with African-American triple-negative breast cancer and promotes angiogenesis.

Breast Cancer Res. 2020-1-28

[10]
Cancer statistics, 2020.

CA Cancer J Clin. 2020-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索