Oster Mathias, Dias Marcelo A, de Wolff Timo, Evans Myfanwy E
Institut für Mathematik, Technische Universität Berlin, Germany.
Institute for Infrastructure and Environment, School of Engineering, The University of Edinburgh, EH9 3FG Scotland, UK.
Sci Adv. 2021 Dec 10;7(50):eabj6737. doi: 10.1126/sciadv.abj6737.
We present a three-periodic, chiral, tensegrity structure and demonstrate that it is auxetic. Our tensegrity structure is constructed using the chiral symmetry Π cylinder packing, transforming cylinders to elastic elements and cylinder contacts to incompressible rods. The resulting structure displays local reentrant geometry at its vertices and is shown to be auxetic when modeled as an equilibrium configuration of spatial constraints subject to a quasi-static deformation. When the structure is subsequently modeled as a lattice material with elastic elements, the auxetic behavior is again confirmed through finite element modeling. The cubic symmetry of the original structure means that the auxetic behavior is observed in both perpendicular directions and is close to isotropic in magnitude. This structure could be the simplest three-dimensional analog to the two-dimensional reentrant honeycomb. This, alongside the chirality of the structure, makes it an interesting design target for multifunctional materials.
我们展示了一种具有三周期性、手性的张拉整体结构,并证明其具有负泊松比特性。我们的张拉整体结构是利用手性对称的Π圆柱堆积构建而成的,将圆柱转变为弹性元件,将圆柱接触转变为不可压缩的杆。所得结构在其顶点处呈现局部凹入几何形状,并且当被建模为受准静态变形的空间约束的平衡构型时,显示出具有负泊松比特性。当该结构随后被建模为具有弹性元件的晶格材料时,通过有限元建模再次证实了其负泊松比行为。原始结构的立方对称性意味着在两个垂直方向上都观察到了负泊松比行为,并且在大小上接近各向同性。这种结构可能是二维凹入蜂窝的最简单三维类似物。这一点,连同结构的手性,使其成为多功能材料的一个有趣设计目标。