Suppr超能文献

淋病奈瑟菌丝氨酸乙酰转移酶;抑制的结构和生化基础。

Serine acetyltransferase from Neisseria gonorrhoeae; structural and biochemical basis of inhibition.

机构信息

Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand.

Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand.

出版信息

Biochem J. 2022 Jan 14;479(1):57-74. doi: 10.1042/BCJ20210564.

Abstract

Serine acetyltransferase (SAT) catalyzes the first step in the two-step pathway to synthesize l-cysteine in bacteria and plants. SAT synthesizes O-acetylserine from substrates l-serine and acetyl coenzyme A and is a key enzyme for regulating cellular cysteine levels by feedback inhibition of l-cysteine, and its involvement in the cysteine synthase complex. We have performed extensive structural and kinetic characterization of the SAT enzyme from the antibiotic-resistant pathogen Neisseria gonorrhoeae. Using X-ray crystallography, we have solved the structures of NgSAT with the non-natural ligand, l-malate (present in the crystallization screen) to 2.01 Å and with the natural substrate l-serine (2.80 Å) bound. Both structures are hexamers, with each monomer displaying the characteristic left-handed parallel β-helix domain of the acyltransferase superfamily of enzymes. Each structure displays both extended and closed conformations of the C-terminal tail. l-malate bound in the active site results in an interesting mix of open and closed active site conformations, exhibiting a structural change mimicking the conformation of cysteine (inhibitor) bound structures from other organisms. Kinetic characterization shows competitive inhibition of l-cysteine with substrates l-serine and acetyl coenzyme A. The SAT reaction represents a key point for the regulation of cysteine biosynthesis and controlling cellular sulfur due to feedback inhibition by l-cysteine and formation of the cysteine synthase complex. Data presented here provide the structural and mechanistic basis for inhibitor design and given this enzyme is not present in humans could be explored to combat the rise of extensively antimicrobial resistant N. gonorrhoeae.

摘要

丝氨酸乙酰转移酶(SAT)催化两步途径中的第一步,用于在细菌和植物中合成 L-半胱氨酸。SAT 从底物 L-丝氨酸和乙酰辅酶 A 合成 O-乙酰丝氨酸,是通过反馈抑制 L-半胱氨酸和其参与半胱氨酸合酶复合物来调节细胞半胱氨酸水平的关键酶。我们已经对来自抗生素耐药病原体淋病奈瑟菌的 SAT 酶进行了广泛的结构和动力学表征。使用 X 射线晶体学,我们已经解决了 NgSAT 与非天然配体 L-苹果酸(存在于结晶筛选中)的结构,分辨率为 2.01 Å,以及与天然底物 L-丝氨酸(2.80 Å)结合的结构。这两种结构都是六聚体,每个单体都显示出酰基转移酶超家族酶的特征左手平行β-螺旋结构域。每个结构都显示出 C 端尾部的延伸和闭合构象。活性位点结合的 L-苹果酸导致有趣的开放和闭合活性位点构象的混合,表现出类似于来自其他生物体的半胱氨酸(抑制剂)结合结构的构象变化。动力学表征显示 L-半胱氨酸对底物 L-丝氨酸和乙酰辅酶 A 的竞争性抑制。SAT 反应代表了半胱氨酸生物合成调节和控制细胞硫的关键点,因为 L-半胱氨酸的反馈抑制和半胱氨酸合酶复合物的形成。这里呈现的数据为抑制剂设计提供了结构和机制基础,并且由于该酶不在人体中存在,因此可以探索用于对抗广泛抗微生物耐药淋病奈瑟菌的出现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/04ce/8786284/f11b6b0fb803/BCJ-479-57-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验