Suppr超能文献

基于 CT 的放射组学特征用于术前鉴别头颈部鳞状细胞癌中程序性死亡配体 1 的高表达和低表达。

A CT-based radiomics signature for preoperative discrimination between high and low expression of programmed death ligand 1 in head and neck squamous cell carcinoma.

机构信息

Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China.

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

Eur J Radiol. 2022 Jan;146:110093. doi: 10.1016/j.ejrad.2021.110093. Epub 2021 Dec 4.

Abstract

PURPOSE

Accurate prediction of the expression level of programmed death ligand 1 (PD-L1) in head and neck squamous cell carcinoma (HNSCC) is crucial before immunotherapy. The purpose of this study was to construct and validate a contrast-enhanced computed tomography (CECT)-based radiomics signature to discriminate between high and low expression status of PD-L1.

METHODS

A total of 179 HNSCC patients who underwent immunohistochemical examination of tumor PD-L1 expression at one of two centers were enrolled in this study and divided into a training set (n = 122; 55 high PD-L1 expression and 67 low PD-L1 expression) and an external validation set (n = 57; 26 high PD-L1 expression and 31 low PD-L1 expression). The least absolute shrinkage and selection operator method was used to select the key features for a CECT-image-based radiomics signature. The performance of the radiomics signature was assessed using receiver operating characteristics analysis.

RESULTS

Six features were finally selected to construct the radiomics signature. The performance of the radiomics signature in the discrimination between high and low PD-L1 expression status was good in both the training and validation sets, with areas under the receiver operating characteristics curve of 0.889 and 0.834 for the training and validation sets, respectively.

CONCLUSIONS

The constructed CECT-based radiomics signature model showed favorable performance for discriminating between high and low PD-L1 expression status in HNSCC patients. It may be useful for screening out those patients with HNSCC who can best benefit from anti-PD-L1 immunotherapy.

摘要

目的

在免疫治疗之前,准确预测头颈部鳞状细胞癌(HNSCC)中程序性死亡配体 1(PD-L1)的表达水平至关重要。本研究旨在构建和验证一种基于增强 CT(CECT)的放射组学特征,以区分 PD-L1 的高表达和低表达状态。

方法

本研究共纳入了在两个中心进行肿瘤 PD-L1 表达免疫组织化学检查的 179 例 HNSCC 患者,并将其分为训练集(n=122;55 例 PD-L1 高表达和 67 例 PD-L1 低表达)和外部验证集(n=57;26 例 PD-L1 高表达和 31 例 PD-L1 低表达)。采用最小绝对收缩和选择算子方法选择用于 CECT 图像的放射组学特征的关键特征。使用受试者工作特征曲线分析评估放射组学特征的性能。

结果

最终选择了 6 个特征来构建放射组学特征。该放射组学特征在训练集和验证集中区分高和低 PD-L1 表达状态的性能均较好,其在训练集和验证集的受试者工作特征曲线下面积分别为 0.889 和 0.834。

结论

所构建的基于 CECT 的放射组学特征模型在区分 HNSCC 患者的 PD-L1 高表达和低表达状态方面表现出良好的性能。它可能有助于筛选出那些最能从抗 PD-L1 免疫治疗中获益的 HNSCC 患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验