Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2083-2086. doi: 10.1109/EMBC46164.2021.9630049.
A code blue event is an emergency code to indicate when a patient goes into cardiac arrest and needs resuscitation. In this paper, we model the binary response of a intensive care unit (ICU) patients experiencing a code-blue event, starting with vital time-series data of patients in 12 ICU beds. Our study introduces day-of and day-ahead risk scoring models trained against ground truth information on per-patient-per-day code-blue events, starting with multi-variate vital-time-series-sequences of varying durations with a plurality of engineered features capturing temporal variations of these signals. Actionable events, including code-blue events, aggregated by patient by day were predicted on the day-of or day-ahead with an overall accuracy of over 80% in our best models. Such models have potential to improve healthcare delivery by providing just-in-time alerting, enabling proactive and preventative clinical interventions, through continuous patient monitoring.
代码为蓝色的事件是指当患者心脏骤停并需要复苏时发出的紧急代码。在本文中,我们对经历代码为蓝色的事件的重症监护病房 (ICU) 患者的二进制响应进行建模,从 12 张 ICU 病床的患者的重要时间序列数据开始。我们的研究引入了针对逐患者每日代码为蓝色事件的真实信息进行训练的日间和次日风险评分模型,从具有多种工程特征的多种可变持续时间的多变量重要时间序列序列开始,这些特征捕获了这些信号的时间变化。通过对患者进行按天汇总的可操作事件(包括代码为蓝色的事件),在当天或次日进行预测,我们的最佳模型的整体准确率超过 80%。通过对患者进行持续监测,这些模型有可能通过及时警报、通过主动和预防性临床干预来改善医疗服务的提供。