Suppr超能文献

一种利用代理信息进行中风 MRI 分析的半监督学习框架。

A Semi-Supervised Learning Framework to Leverage Proxy Information for Stroke MRI Analysis.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2258-2261. doi: 10.1109/EMBC46164.2021.9631098.

Abstract

Treating acute ischemic stroke (AIS) patients is a time-sensitive endeavor, as therapies target areas experiencing ischemia to prevent irreversible damage to brain tissue. Depending on how an AIS is progressing, thrombolytics such as tissue-plasminogen activator (tPA) may be administered within a short therapeutic window. The underlying conditions for optimal treatment are varied. While previous clinical guidelines only permitted tPA to be administered to patients with a known onset within 4.5 hours, clinical trials demonstrated that patients with signal intensity differences between diffusion-weighted imaging (DWI) and fluid-attenuated inversion recovery (FLAIR) sequences in an MRI study can benefit from thrombolytic therapy. This intensity difference, known as DWI-FLAIR mismatch, is prone to high inter-reader variability. Thus, a paradigm exists where onset time serves as a weak proxy for DWI-FLAIR mismatch. In this study, we sought to detect DWI-FLAIR mismatch in an automated fashion, and we compared this to assessments done by three expert neuroradiologists. Our approach involved training a deep learning model on MRI to classify tissue clock and leveraging time clock as a weak proxy label to supplement training in a semi-supervised learning (SSL) framework. We evaluate our deep learning model by testing it on an unseen dataset from an external institution. In total, our proposed framework was able to improve detection of DWI-FLAIR mismatch, achieving a top ROC-AUC of 74.30%. Our study illustrated that incorporating clinical proxy information into SSL can improve model optimization by increasing the fidelity of unlabeled samples included in the training process.

摘要

治疗急性缺血性脑卒中(AIS)患者是一项时间敏感的工作,因为治疗方法针对的是发生缺血的区域,以防止脑组织的不可逆转损伤。根据 AIS 的进展情况,组织型纤溶酶原激活剂(tPA)等溶栓药物可能在较短的治疗窗口内给药。最佳治疗的基本条件是多样的。虽然以前的临床指南只允许在已知发病时间在 4.5 小时内的患者中使用 tPA,但临床试验表明,在 MRI 研究中弥散加权成像(DWI)和液体衰减反转恢复(FLAIR)序列之间存在信号强度差异的患者可以从溶栓治疗中获益。这种强度差异称为 DWI-FLAIR 不匹配,容易受到高读者间变异性的影响。因此,存在一种以发病时间作为 DWI-FLAIR 不匹配的弱代理的范例。在这项研究中,我们试图以自动化的方式检测 DWI-FLAIR 不匹配,并将其与三位专家神经放射学家的评估进行比较。我们的方法涉及在 MRI 上训练深度学习模型以对组织时钟进行分类,并利用时间时钟作为弱代理标签来补充半监督学习(SSL)框架中的训练。我们通过在外部机构的未见过数据集上测试我们的深度学习模型来评估我们的方法。总的来说,我们提出的框架能够提高 DWI-FLAIR 不匹配的检测,达到了 74.30%的顶级 ROC-AUC。我们的研究表明,通过增加训练过程中包含的未标记样本的保真度,将临床代理信息纳入 SSL 可以改善模型优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验