From the Departments of Neuroradiology (J.B., L.L., G.H., W.B.H., O.N., C.O.) and Neurology (G.T., J.C.B.), GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, 1 rue Cabanis, 75014 Paris, France; INSERM U1266, Paris, France (J.B., M.A.D., L.L., G.T., W.B.H., S.C., C.D., O.N., J.C.B., C.O.); Université de Paris, FHU Neurovasc, Paris, France (J.B., L.L., G.T., W.B.H., S.C., C.D., O.N., J.C.B., C.O.); and PARIETAL Team, INRIA, Saclay, France (B.T.).
Radiology. 2022 Apr;303(1):153-159. doi: 10.1148/radiol.211394. Epub 2022 Jan 11.
Background In acute ischemic stroke (AIS), fluid-attenuated inversion recovery (FLAIR) is used for treatment decisions when onset time is unknown. Synthetic FLAIR could be generated with deep learning from information embedded in diffusion-weighted imaging (DWI) and could replace acquired FLAIR sequence (real FLAIR) and shorten MRI duration. Purpose To compare performance of synthetic and real FLAIR for DWI-FLAIR mismatch estimation and identification of patients presenting within 4.5 hours from symptom onset. Materials and Methods In this retrospective study, all pretreatment and early follow-up (<48 hours after symptom onset) MRI data sets including DWI ( = 0-1000 sec/mm) and FLAIR sequences obtained in consecutive patients with AIS referred for reperfusion therapies between January 2002 and May 2019 were included. On the training set (80%), a generative adversarial network was trained to produce synthetic FLAIR with DWI as input. On the test set (20%), synthetic FLAIR was computed without real FLAIR knowledge. The DWI-FLAIR mismatch was evaluated on both FLAIR data sets by four independent readers. Interobserver reproducibility and DWI-FLAIR mismatch concordance between synthetic and real FLAIR were evaluated with κ statistics. Sensitivity and specificity for identification of AIS within 4.5 hours were compared in patients with known onset time by using McNemar test. Results The study included 1416 MRI scans (861 patients; median age, 71 years [interquartile range, 57-81 years]; 375 men), yielding 1134 and 282 scans for training and test sets, respectively. Regarding DWI-FLAIR mismatch, interobserver reproducibility was substantial for real and synthetic FLAIR (κ = 0.80 [95% CI: 0.74, 0.87] and 0.80 [95% CI: 0.74, 0.87], respectively). After consensus, concordance between real and synthetic FLAIR was almost perfect (κ = 0.88; 95% CI: 0.82, 0.93). Diagnostic value for identifying AIS within 4.5 hours did not differ between real and synthetic FLAIR (sensitivity: 107 of 131 [82%] vs 111 of 131 [85%], = .2; specificity: 96 of 104 [92%] vs 96 of 104 [92%], respectively, > .99). Conclusion Synthetic fluid-attenuated inversion recovery (FLAIR) had diagnostic performances similar to real FLAIR in depicting diffusion-weighted imaging-FLAIR mismatch and in helping to identify early acute ischemic stroke, and it may accelerate MRI protocols. © RSNA, 2022 See also the editorial by Carroll and Hurley in this issue.
背景 在急性缺血性脑卒中(AIS)中,当发病时间未知时,使用液体衰减反转恢复(FLAIR)进行治疗决策。可以使用深度学习从弥散加权成像(DWI)中嵌入的信息生成合成 FLAIR,并可以替代获取的 FLAIR 序列(真实 FLAIR)并缩短 MRI 时间。目的 比较合成和真实 FLAIR 对 DWI-FLAIR 不匹配的评估和在发病 4.5 小时内出现的患者的识别。材料与方法 在这项回顾性研究中,纳入了 2002 年 1 月至 2019 年 5 月期间连续因再灌注治疗而转诊的 AIS 患者的所有预处理和早期随访(<48 小时发病后)MRI 数据集,包括 DWI(=0-1000 sec/mm)和 FLAIR 序列。在训练集(80%)上,使用生成对抗网络以 DWI 作为输入来生成合成 FLAIR。在测试集(20%)上,在没有真实 FLAIR 知识的情况下计算合成 FLAIR。四名独立的读者在两个 FLAIR 数据集上评估 DWI-FLAIR 不匹配。使用κ统计量评估合成和真实 FLAIR 之间的观察者间再现性和 DWI-FLAIR 不匹配的一致性。通过 McNemar 检验比较在已知发病时间的患者中,用合成和真实 FLAIR 识别 4.5 小时内 AIS 的敏感性和特异性。结果 研究共纳入 1416 次 MRI 扫描(861 例患者;中位年龄 71 岁[四分位数范围,57-81 岁];375 名男性),分别为训练集和测试集提供了 1134 次和 282 次扫描。关于 DWI-FLAIR 不匹配,真实和合成 FLAIR 的观察者间再现性良好(κ=0.80[95%CI:0.74,0.87]和 0.80[95%CI:0.74,0.87])。在达成共识后,真实和合成 FLAIR 之间的一致性几乎是完美的(κ=0.88;95%CI:0.82,0.93)。用真实和合成 FLAIR 识别 4.5 小时内 AIS 的诊断价值没有差异(敏感性:131 例中有 107 例[82%]与 131 例中有 111 例[85%],=0.2;特异性:104 例中有 96 例[92%]与 104 例中有 96 例[92%],均>0.99)。结论 合成 FLAIR 在描绘 DWI-FLAIR 不匹配和帮助识别早期急性缺血性脑卒中方面与真实 FLAIR 具有相似的诊断性能,并且可能会加速 MRI 方案。©RSNA,2022 请参阅本期 Carroll 和 Hurley 的社论。