Suppr超能文献

基于深度监督多尺度注意力的糖尿病视网膜病变分割。

Segmentation in Diabetic Retinopathy using Deeply-Supervised Multiscalar Attention.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2614-2617. doi: 10.1109/EMBC46164.2021.9630600.

Abstract

Diabetic Retinopathy (DR) is a progressive chronic eye disease that leads to irreversible blindness. Detection of DR at an early stage of the disease is crucial and requires proper detection of minute DR pathologies. A novel Deeply-Supervised Multiscale Attention U-Net (Mult-Attn-U-Net) is proposed for segmentation of different DR pathologies viz. Microaneurysms (MA), Hemorrhages (HE), Soft and Hard Exudates (SE and EX). A publicly available dataset (IDRiD) is used to evaluate the performance. Comparative study with four state-of-the-art models establishes its superiority. The best segmentation accuracy obtained by the model for MA, HE, SE are 0.65, 0.70, 0.72, respectively.

摘要

糖尿病视网膜病变(DR)是一种渐进性的慢性眼病,可导致不可逆转的失明。在疾病的早期阶段检测到 DR 至关重要,这需要对微小的 DR 病变进行适当的检测。提出了一种新的深度监督多尺度注意 U-Net(Mult-Attn-U-Net),用于分割不同的 DR 病变,如微动脉瘤(MA)、出血(HE)、软渗出物(SE)和硬渗出物(EX)。使用一个公开的数据集(IDRiD)来评估性能。与四个最先进的模型进行的比较研究证明了其优越性。该模型对 MA、HE、SE 的最佳分割准确率分别为 0.65、0.70、0.72。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验