文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于数据的深度学习方法在阿尔茨海默病患者轻度认知障碍分类中的应用

Data-Limited Deep Learning Methods for Mild Cognitive Impairment Classification in Alzheimer's Disease Patients.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2641-2646. doi: 10.1109/EMBC46164.2021.9630598.


DOI:10.1109/EMBC46164.2021.9630598
PMID:34891795
Abstract

Mild Cognitive Impairment (MCI) is the stage between the declining of normal brain function and the more serious decline of dementia. Alzheimer's disease (AD) is one of the leading forms of dementia. Although MCI does not always lead to AD, an early diagnosis of MCI may be helpful in finding those with early signs of AD. The Alzheimer's Disease Neuroimaging Initiative (ADNI) has utilized magnetic resonance imaging (MRI) for the diagnosis of MCI and AD. MCI can be separated into two types: Early MCI (EMCI) and Late MCI (LMCI). Furthermore, MRI results can be separated into three views of axial, coronal and sagittal planes. In this work, we perform binary classifications between healthy people and the two types of MCI based on limited MRI images using deep learning approaches. Specifically, we implement and compare two various convolutional neural network (CNN) architectures. The MRIs of 516 patients were used in this study: 172 control normal (CN), 172 EMCI patients and 172 LMCI patients. For this data set, 50% of the images were used for training, 20% for validation, and the remaining 30% for testing. The results showed that the best classification for one model was between CN and LMCI for the coronal view with an accuracy of 79.67%. In addition, we achieved 67.85% accuracy for the second proposed model for the same classification group.

摘要

轻度认知障碍 (MCI) 是正常大脑功能下降和更严重痴呆症之间的阶段。阿尔茨海默病 (AD) 是痴呆症的主要形式之一。虽然 MCI 不一定会导致 AD,但对 MCI 的早期诊断可能有助于发现那些有 AD 早期迹象的人。阿尔茨海默病神经影像学倡议 (ADNI) 已利用磁共振成像 (MRI) 来诊断 MCI 和 AD。MCI 可以分为两种类型:早期 MCI (EMCI) 和晚期 MCI (LMCI)。此外,MRI 结果可以分为轴向、冠状和矢状三个视图。在这项工作中,我们使用深度学习方法,基于有限的 MRI 图像,在健康人和两种 MCI 类型之间进行二分类。具体来说,我们实现并比较了两种不同的卷积神经网络 (CNN) 架构。本研究共使用了 516 名患者的 MRI:172 名对照正常 (CN)、172 名 EMCI 患者和 172 名 LMCI 患者。对于这个数据集,50%的图像用于训练,20%用于验证,其余 30%用于测试。结果表明,对于冠状视图,一种模型的最佳分类是 CN 和 LMCI,准确率为 79.67%。此外,我们为同一分类组的第二个提出的模型实现了 67.85%的准确率。

相似文献

[1]
Data-Limited Deep Learning Methods for Mild Cognitive Impairment Classification in Alzheimer's Disease Patients.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[2]
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.

Neuroimage Clin. 2019-7-4

[3]
A Deep Learning approach for Diagnosis of Mild Cognitive Impairment Based on MRI Images.

Brain Sci. 2019-8-28

[4]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[5]
Comparing different algorithms for the course of Alzheimer's disease using machine learning.

Ann Palliat Med. 2021-9

[6]
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.

Int J Neural Syst. 2020-6

[7]
Automated classification of Alzheimer's disease, mild cognitive impairment, and cognitively normal patients using 3D convolutional neural network and radiomic features from T1-weighted brain MRI: A comparative study on detection accuracy.

Clin Imaging. 2024-11

[8]
A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.

J Med Syst. 2019-12-18

[9]
Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease.

Neuroimage Clin. 2021

[10]
A Transfer Learning Approach for Early Diagnosis of Alzheimer's Disease on MRI Images.

Neuroscience. 2021-4-15

引用本文的文献

[1]
Recognizing Pediatric Tuberous Sclerosis Complex Based on Multi-Contrast MRI and Deep Weighted Fusion Network.

Bioengineering (Basel). 2023-7-22

[2]
An Attention-Based CoT-ResNet With Channel Shuffle Mechanism for Classification of Alzheimer's Disease Levels.

Front Aging Neurosci. 2022-7-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索