文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

皮质图神经网络用于 AD 和 MCI 的诊断以及跨人群的迁移学习。

Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.

机构信息

Department of Biomedical Engineering and Clinical Research Center, National University of Singapore, Singapore.

Department of Mathematics, National University of Singapore, Singapore.

出版信息

Neuroimage Clin. 2019;23:101929. doi: 10.1016/j.nicl.2019.101929. Epub 2019 Jul 4.


DOI:10.1016/j.nicl.2019.101929
PMID:31491832
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6627731/
Abstract

Combining machine learning with neuroimaging data has a great potential for early diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, it remains unclear how well the classifiers built on one population can predict MCI/AD diagnosis of other populations. This study aimed to employ a spectral graph convolutional neural network (graph-CNN), that incorporated cortical thickness and geometry, to identify MCI and AD based on 3089 T-weighted MRI data of the ADNI-2 cohort, and to evaluate its feasibility to predict AD in the ADNI-1 cohort (n = 3602) and an Asian cohort (n = 347). For the ADNI-2 cohort, the graph-CNN showed classification accuracy of controls (CN) vs. AD at 85.8% and early MCI (EMCI) vs. AD at 79.2%, followed by CN vs. late MCI (LMCI) (69.3%), LMCI vs. AD (65.2%), EMCI vs. LMCI (60.9%), and CN vs. EMCI (51.8%). We demonstrated the robustness of the graph-CNN among the existing deep learning approaches, such as Euclidean-domain-based multilayer network and 1D CNN on cortical thickness, and 2D and 3D CNNs on T-weighted MR images of the ADNI-2 cohort. The graph-CNN also achieved the prediction on the conversion of EMCI to AD at 75% and that of LMCI to AD at 92%. The find-tuned graph-CNN further provided a promising CN vs. AD classification accuracy of 89.4% on the ADNI-1 cohort and >90% on the Asian cohort. Our study demonstrated the feasibility to transfer AD/MCI classifiers learned from one population to the other. Notably, incorporating cortical geometry in CNN has the potential to improve classification performance.

摘要

将机器学习与神经影像学数据相结合,对于轻度认知障碍 (MCI) 和阿尔茨海默病 (AD) 的早期诊断具有巨大潜力。然而,目前尚不清楚基于一个人群构建的分类器在多大程度上可以预测其他人群的 MCI/AD 诊断。本研究旨在采用一种谱图卷积神经网络(graph-CNN),结合皮质厚度和几何形状,基于 ADNI-2 队列的 3089 个 T1 加权 MRI 数据来识别 MCI 和 AD,并评估其在 ADNI-1 队列(n=3602)和亚洲队列(n=347)中预测 AD 的可行性。在 ADNI-2 队列中,graph-CNN 对对照组 (CN) 与 AD 的分类准确率为 85.8%,早期 MCI (EMCI) 与 AD 的分类准确率为 79.2%,其次是 CN 与晚期 MCI (LMCI)(69.3%),LMCI 与 AD(65.2%),EMCI 与 LMCI(60.9%),以及 CN 与 EMCI(51.8%)。我们展示了 graph-CNN 在现有的深度学习方法中的稳健性,例如皮质厚度的基于欧几里得域的多层网络和 1D CNN,以及 ADNI-2 队列的 T1 加权 MRI 的 2D 和 3D CNN。graph-CNN 还实现了 EMCI 向 AD 转换的预测准确率为 75%,LMCI 向 AD 转换的预测准确率为 92%。经过调整的 graph-CNN 进一步提供了一个有希望的 CN 与 AD 的分类准确率,在 ADNI-1 队列中为 89.4%,在亚洲队列中>90%。本研究表明,从一个人群转移到另一个人群的 AD/MCI 分类器是可行的。值得注意的是,将皮质几何形状纳入 CNN 具有提高分类性能的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/d6cb3f0424a4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/35cfbe035fa9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/5dbc95b7a0ea/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/f9687a69537a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/2b2ab7fb56ac/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/21cc992fa708/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/d6cb3f0424a4/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/35cfbe035fa9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/5dbc95b7a0ea/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/f9687a69537a/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/2b2ab7fb56ac/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/21cc992fa708/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fa6/6627731/d6cb3f0424a4/gr6.jpg

相似文献

[1]
Cortical graph neural network for AD and MCI diagnosis and transfer learning across populations.

Neuroimage Clin. 2019-7-4

[2]
Automated classification of Alzheimer's disease, mild cognitive impairment, and cognitively normal patients using 3D convolutional neural network and radiomic features from T1-weighted brain MRI: A comparative study on detection accuracy.

Clin Imaging. 2024-11

[3]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[4]
Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks.

Neuroimage Clin. 2018-12-18

[5]
A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks.

J Med Syst. 2019-12-18

[6]
Comparing different algorithms for the course of Alzheimer's disease using machine learning.

Ann Palliat Med. 2021-9

[7]
Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease.

Neuroimage Clin. 2021

[8]
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.

Neuroimage. 2020-3

[9]
Automated MRI-Based Deep Learning Model for Detection of Alzheimer's Disease Process.

Int J Neural Syst. 2020-6

[10]
A novel joint HCPMMP method for automatically classifying Alzheimer's and different stage MCI patients.

Behav Brain Res. 2019-3-2

引用本文的文献

[1]
Translating phenotypic prediction models from big to small anatomical MRI data using meta-matching.

Imaging Neurosci (Camb). 2024-8-1

[2]
Multimodal MRI accurately identifies amyloid status in unbalanced cohorts in Alzheimer's disease continuum.

Netw Neurosci. 2025-3-20

[3]
MRI-based mild cognitive impairment and Alzheimer's disease classification using an algorithm of combination of variational autoencoder and other machine learning classifiers.

J Alzheimers Dis Rep. 2024-10-18

[4]
Multimodal surface-based transformer model for early diagnosis of Alzheimer's disease.

Sci Rep. 2025-2-17

[5]
Improved deep canonical correlation fusion approach for detection of early mild cognitive impairment.

Med Biol Eng Comput. 2025-5

[6]
A fusion analytic framework for investigating functional brain connectivity differences using resting-state fMRI.

Front Neurosci. 2024-12-11

[7]
Segmentation for mammography classification utilizing deep convolutional neural network.

BMC Med Imaging. 2024-12-18

[8]
A Surface-based deep learning approach for cortical shape analysis.

bioRxiv. 2024-10-29

[9]
An intelligent magnetic resonance imagining-based multistage Alzheimer's disease classification using swish-convolutional neural networks.

Med Biol Eng Comput. 2025-3

[10]
Early Alzheimer's Disease Detection: A Review of Machine Learning Techniques for Forecasting Transition from Mild Cognitive Impairment.

Diagnostics (Basel). 2024-8-13

本文引用的文献

[1]
Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks.

Neuroimage Clin. 2018-12-18

[2]
Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: A systematic review.

Alzheimers Dement (Amst). 2018-8-11

[3]
Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial.

PLoS Med. 2018-9-24

[4]
Classification and Prediction of Brain Disorders Using Functional Connectivity: Promising but Challenging.

Front Neurosci. 2018-8-6

[5]
Structural brain imaging in Alzheimer's disease and mild cognitive impairment: biomarker analysis and shared morphometry database.

Sci Rep. 2018-7-26

[6]
Multiscale Frame-Based Kernels for Large Deformation Diffeomorphic Metric Mapping.

IEEE Trans Med Imaging. 2018-5-1

[7]
The personalized Alzheimer's disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment.

Alzheimers Dement (Amst). 2018-3-17

[8]
Conversion and time-to-conversion predictions of mild cognitive impairment using low-rank affinity pursuit denoising and matrix completion.

Med Image Anal. 2018-1-31

[9]
A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages.

Neuroimage. 2017-7-15

[10]
Selection bias in the reported performances of AD classification pipelines.

Neuroimage Clin. 2016-12-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索