Department of Biomedical Engineering and Clinical Research Center, National University of Singapore, Singapore.
Department of Mathematics, National University of Singapore, Singapore.
Neuroimage Clin. 2019;23:101929. doi: 10.1016/j.nicl.2019.101929. Epub 2019 Jul 4.
Combining machine learning with neuroimaging data has a great potential for early diagnosis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, it remains unclear how well the classifiers built on one population can predict MCI/AD diagnosis of other populations. This study aimed to employ a spectral graph convolutional neural network (graph-CNN), that incorporated cortical thickness and geometry, to identify MCI and AD based on 3089 T-weighted MRI data of the ADNI-2 cohort, and to evaluate its feasibility to predict AD in the ADNI-1 cohort (n = 3602) and an Asian cohort (n = 347). For the ADNI-2 cohort, the graph-CNN showed classification accuracy of controls (CN) vs. AD at 85.8% and early MCI (EMCI) vs. AD at 79.2%, followed by CN vs. late MCI (LMCI) (69.3%), LMCI vs. AD (65.2%), EMCI vs. LMCI (60.9%), and CN vs. EMCI (51.8%). We demonstrated the robustness of the graph-CNN among the existing deep learning approaches, such as Euclidean-domain-based multilayer network and 1D CNN on cortical thickness, and 2D and 3D CNNs on T-weighted MR images of the ADNI-2 cohort. The graph-CNN also achieved the prediction on the conversion of EMCI to AD at 75% and that of LMCI to AD at 92%. The find-tuned graph-CNN further provided a promising CN vs. AD classification accuracy of 89.4% on the ADNI-1 cohort and >90% on the Asian cohort. Our study demonstrated the feasibility to transfer AD/MCI classifiers learned from one population to the other. Notably, incorporating cortical geometry in CNN has the potential to improve classification performance.
将机器学习与神经影像学数据相结合,对于轻度认知障碍 (MCI) 和阿尔茨海默病 (AD) 的早期诊断具有巨大潜力。然而,目前尚不清楚基于一个人群构建的分类器在多大程度上可以预测其他人群的 MCI/AD 诊断。本研究旨在采用一种谱图卷积神经网络(graph-CNN),结合皮质厚度和几何形状,基于 ADNI-2 队列的 3089 个 T1 加权 MRI 数据来识别 MCI 和 AD,并评估其在 ADNI-1 队列(n=3602)和亚洲队列(n=347)中预测 AD 的可行性。在 ADNI-2 队列中,graph-CNN 对对照组 (CN) 与 AD 的分类准确率为 85.8%,早期 MCI (EMCI) 与 AD 的分类准确率为 79.2%,其次是 CN 与晚期 MCI (LMCI)(69.3%),LMCI 与 AD(65.2%),EMCI 与 LMCI(60.9%),以及 CN 与 EMCI(51.8%)。我们展示了 graph-CNN 在现有的深度学习方法中的稳健性,例如皮质厚度的基于欧几里得域的多层网络和 1D CNN,以及 ADNI-2 队列的 T1 加权 MRI 的 2D 和 3D CNN。graph-CNN 还实现了 EMCI 向 AD 转换的预测准确率为 75%,LMCI 向 AD 转换的预测准确率为 92%。经过调整的 graph-CNN 进一步提供了一个有希望的 CN 与 AD 的分类准确率,在 ADNI-1 队列中为 89.4%,在亚洲队列中>90%。本研究表明,从一个人群转移到另一个人群的 AD/MCI 分类器是可行的。值得注意的是,将皮质几何形状纳入 CNN 具有提高分类性能的潜力。
Neuroimage Clin. 2019-7-4
Ann Palliat Med. 2021-9
Int J Neural Syst. 2020-6
Imaging Neurosci (Camb). 2024-8-1
Med Biol Eng Comput. 2025-5
BMC Med Imaging. 2024-12-18
bioRxiv. 2024-10-29
Alzheimers Dement (Amst). 2018-8-11
IEEE Trans Med Imaging. 2018-5-1
Neuroimage Clin. 2016-12-24