Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:2860-2863. doi: 10.1109/EMBC46164.2021.9631097.
A significant challenge for brain histological data analysis is to precisely identify anatomical regions in order to perform accurate local quantifications and evaluate therapeutic solutions. Usually, this task is performed manually, becoming therefore tedious and subjective. Another option is to use automatic or semi-automatic methods, among which segmentation using digital atlases co-registration. However, most available atlases are 3D, whereas digitized histological data are 2D. Methods to perform such 2D-3D segmentation from an atlas are required. This paper proposes a strategy to automatically and accurately segment single 2D coronal slices within a 3D volume of atlas, using linear registration. We validated its robustness and performance using an exploratory approach at whole-brain scale.
脑组织结构数据分析的一个重大挑战是准确识别解剖区域,以便进行精确的局部量化和评估治疗方案。通常,这项任务是手动完成的,因此既繁琐又主观。另一种选择是使用自动或半自动方法,其中包括使用数字图谱配准的分割。然而,大多数现有的图谱都是 3D 的,而数字化的组织学数据是 2D 的。因此需要使用图谱进行这种 2D-3D 分割的方法。本文提出了一种使用线性配准自动且准确地分割 3D 图谱中单张 2D 冠状切片的策略。我们使用全脑范围的探索性方法验证了其稳健性和性能。