Piluso Sébastien, Souedet Nicolas, Jan Caroline, Hérard Anne-Sophie, Clouchoux Cédric, Delzescaux Thierry
Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
WITSEE, Paris, France.
Front Neurosci. 2024 Jan 11;17:1230814. doi: 10.3389/fnins.2023.1230814. eCollection 2023.
Conventional histology of the brain remains the gold standard in the analysis of animal models. In most biological studies, standard protocols usually involve producing a limited number of histological slices to be analyzed. These slices are often selected into a specific anatomical region of interest or around a specific pathological lesion. Due to the lack of automated solutions to analyze such single slices, neurobiologists perform the segmentation of anatomical regions manually most of the time. Because the task is long, tedious, and operator-dependent, we propose an automated atlas segmentation method called giRAff, which combines rigid and affine registrations and is suitable for conventional histological protocols involving any number of single slices from a given mouse brain. In particular, the method has been tested on several routine experimental protocols involving different anatomical regions of different sizes and for several brains. For a given set of single slices, the method can automatically identify the corresponding slices in the mouse Allen atlas template with good accuracy and segmentations comparable to those of an expert. This versatile and generic method allows the segmentation of any single slice without additional anatomical context in about 1 min. Basically, our proposed giRAff method is an easy-to-use, rapid, and automated atlas segmentation tool compliant with a wide variety of standard histological protocols.
大脑的传统组织学分析仍然是动物模型分析中的金标准。在大多数生物学研究中,标准方案通常包括制作有限数量的组织学切片以供分析。这些切片通常被选入特定的感兴趣解剖区域或围绕特定的病理病变。由于缺乏分析此类单一切片的自动化解决方案,神经生物学家大多时候手动进行解剖区域的分割。由于这项任务耗时、乏味且依赖操作人员,我们提出了一种名为giRAff的自动图谱分割方法,该方法结合了刚体和仿射配准,适用于涉及来自给定小鼠大脑任意数量单一切片的传统组织学方案。特别是,该方法已在涉及不同大小不同解剖区域以及多个大脑的多个常规实验方案上进行了测试。对于给定的一组单一切片,该方法能够以较高的准确率自动识别小鼠艾伦图谱模板中的相应切片,其分割结果与专家的分割结果相当。这种通用方法能够在大约1分钟内对任何单一切片进行分割,无需额外的解剖背景信息。基本上,我们提出的giRAff方法是一种易于使用、快速且自动化的图谱分割工具,符合多种标准组织学方案。