Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3259-3262. doi: 10.1109/EMBC46164.2021.9630441.
Metabolic connectivity is conventionally calculated in terms of correlation of static positron emission tomography (PET) measurements across subjects. There is increasing interest in deriving metabolic connectivity at the single-subject level from dynamic PET data, in a similar way to functional magnetic resonance imaging. However, the strong multicollinearity among region-wise PET time-activity curves (TACs), their non-Gaussian distribution, and the choice of the best strategy for TAC standardization before metabolic connectivity estimation, are non-trivial methodological issues to be tackled.In this work we test four different approaches to estimate sparse inverse covariance matrices, as well as three similarity-based methods to derive adjacency matrices. These approaches, combined with three different TAC standardization strategies, are employed to quantify metabolic connectivity from dynamic [F]fluorodeoxyglucose ([F]FDG) PET data in four healthy subjects.
代谢连接通常是根据跨被试的静态正电子发射断层扫描 (PET) 测量的相关性来计算的。越来越多的人有兴趣从动态 PET 数据中得出单个体水平的代谢连接,这类似于功能磁共振成像。然而,在进行代谢连接估计之前,区域 PET 时间活动曲线 (TAC) 之间的强多重共线性、非正态分布以及 TAC 标准化的最佳策略的选择,都是需要解决的重要方法问题。在这项工作中,我们测试了四种不同的方法来估计稀疏逆协方差矩阵,以及三种基于相似性的方法来推导邻接矩阵。这些方法结合三种不同的 TAC 标准化策略,用于从四个健康受试者的动态 [F]氟脱氧葡萄糖 ([F]FDG) PET 数据中量化代谢连接。