Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
Padova Neuroscience Center, University of Padova, Padova, Italy.
J Cereb Blood Flow Metab. 2023 Nov;43(11):1905-1918. doi: 10.1177/0271678X231184365. Epub 2023 Jun 28.
Metabolic connectivity (MC) has been previously proposed as the covariation of static [F]FDG PET images across participants, i.e., MC (ai-MC). In few cases, MC has been inferred from dynamic [F]FDG signals, i.e., MC (wi-MC), as for resting-state fMRI functional connectivity (FC). The validity and interpretability of both approaches is an important open issue. Here we reassess this topic, aiming to 1) develop a novel wi-MC methodology; 2) compare ai-MC maps from standardized uptake value ratio () vs. [F]FDG kinetic parameters fully describing the tracer behavior (i.e., , , ); 3) assess MC interpretability in comparison to structural connectivity and FC. We developed a new approach based on Euclidean distance to calculate wi-MC from PET time-activity curves. The across-individual correlation of , , , produced different networks depending on the chosen [F]FDG parameter ( MC vs. MC, r = 0.44). We found that wi-MC and ai-MC matrices are dissimilar (maximum r = 0.37), and that the match with FC is higher for wi-MC (Dice similarity: 0.47-0.63) than for ai-MC (0.24-0.39). Our analyses demonstrate that calculating individual-level MC from dynamic PET is feasible and yields interpretable matrices that bear similarity to fMRI FC measures.
代谢连接度(MC)曾被提议作为跨参与者的静态[F]FDG PET 图像的协变,即 MC(ai-MC)。在少数情况下,MC 是从动态[F]FDG 信号推断出来的,即 MC(wi-MC),就像静息状态 fMRI 功能连接(FC)一样。这两种方法的有效性和可解释性是一个重要的开放性问题。在这里,我们重新评估这个主题,旨在 1)开发一种新的 wi-MC 方法;2)比较标准化摄取值比()和完全描述示踪剂行为的[F]FDG 动力学参数(即,,,)的 ai-MC 图谱;3)与结构连接和 FC 相比,评估 MC 的可解释性。我们开发了一种新的基于欧几里得距离的方法,从 PET 时间-活性曲线计算 wi-MC。跨个体的、、、的相关性产生了不同的网络,这取决于所选的[F]FDG 参数(MC 与 MC,r=0.44)。我们发现 wi-MC 和 ai-MC 矩阵是不同的(最大 r=0.37),并且 wi-MC 与 FC 的匹配度更高(骰子相似度:0.47-0.63),而 ai-MC 的匹配度更低(0.24-0.39)。我们的分析表明,从动态 PET 计算个体水平的 MC 是可行的,并产生可解释的矩阵,与 fMRI FC 测量具有相似性。