Suppr超能文献

基于 [F]FDG PET 示踪剂和动力学模型的代谢连通性映射新框架。

A new framework for metabolic connectivity mapping using bolus [F]FDG PET and kinetic modeling.

机构信息

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.

Padova Neuroscience Center, University of Padova, Padova, Italy.

出版信息

J Cereb Blood Flow Metab. 2023 Nov;43(11):1905-1918. doi: 10.1177/0271678X231184365. Epub 2023 Jun 28.

Abstract

Metabolic connectivity (MC) has been previously proposed as the covariation of static [F]FDG PET images across participants, i.e., MC (ai-MC). In few cases, MC has been inferred from dynamic [F]FDG signals, i.e., MC (wi-MC), as for resting-state fMRI functional connectivity (FC). The validity and interpretability of both approaches is an important open issue. Here we reassess this topic, aiming to 1) develop a novel wi-MC methodology; 2) compare ai-MC maps from standardized uptake value ratio () vs. [F]FDG kinetic parameters fully describing the tracer behavior (i.e., , , ); 3) assess MC interpretability in comparison to structural connectivity and FC. We developed a new approach based on Euclidean distance to calculate wi-MC from PET time-activity curves. The across-individual correlation of , , , produced different networks depending on the chosen [F]FDG parameter ( MC vs. MC, r = 0.44). We found that wi-MC and ai-MC matrices are dissimilar (maximum r = 0.37), and that the match with FC is higher for wi-MC (Dice similarity: 0.47-0.63) than for ai-MC (0.24-0.39). Our analyses demonstrate that calculating individual-level MC from dynamic PET is feasible and yields interpretable matrices that bear similarity to fMRI FC measures.

摘要

代谢连接度(MC)曾被提议作为跨参与者的静态[F]FDG PET 图像的协变,即 MC(ai-MC)。在少数情况下,MC 是从动态[F]FDG 信号推断出来的,即 MC(wi-MC),就像静息状态 fMRI 功能连接(FC)一样。这两种方法的有效性和可解释性是一个重要的开放性问题。在这里,我们重新评估这个主题,旨在 1)开发一种新的 wi-MC 方法;2)比较标准化摄取值比()和完全描述示踪剂行为的[F]FDG 动力学参数(即,,,)的 ai-MC 图谱;3)与结构连接和 FC 相比,评估 MC 的可解释性。我们开发了一种新的基于欧几里得距离的方法,从 PET 时间-活性曲线计算 wi-MC。跨个体的、、、的相关性产生了不同的网络,这取决于所选的[F]FDG 参数(MC 与 MC,r=0.44)。我们发现 wi-MC 和 ai-MC 矩阵是不同的(最大 r=0.37),并且 wi-MC 与 FC 的匹配度更高(骰子相似度:0.47-0.63),而 ai-MC 的匹配度更低(0.24-0.39)。我们的分析表明,从动态 PET 计算个体水平的 MC 是可行的,并产生可解释的矩阵,与 fMRI FC 测量具有相似性。

相似文献

1
A new framework for metabolic connectivity mapping using bolus [F]FDG PET and kinetic modeling.
J Cereb Blood Flow Metab. 2023 Nov;43(11):1905-1918. doi: 10.1177/0271678X231184365. Epub 2023 Jun 28.
3
5
(18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy.
J Nucl Med. 2014 Jan;55(1):154-60. doi: 10.2967/jnumed.113.122069. Epub 2013 Nov 14.
6
Generation of synthetic PET images of synaptic density and amyloid from F-FDG images using deep learning.
Med Phys. 2021 Sep;48(9):5115-5129. doi: 10.1002/mp.15073. Epub 2021 Jul 27.

引用本文的文献

2
Molecular connectivity studies in neurotransmission: a scoping review.
Imaging Neurosci (Camb). 2025 Apr 4;3. doi: 10.1162/imag_a_00530. eCollection 2025.
6
Metabolic connectivity has greater predictive utility for age and cognition than functional connectivity.
Brain Commun. 2025 Feb 18;7(1):fcaf075. doi: 10.1093/braincomms/fcaf075. eCollection 2025.
7
Individual metabolic brain network abnormalities associated with drug-resistant mTLE vary in surgical outcomes.
Front Neurol. 2024 Dec 18;15:1444787. doi: 10.3389/fneur.2024.1444787. eCollection 2024.
8
Reconfiguration of metabolic connectivity in ageing.
Commun Biol. 2024 Nov 30;7(1):1600. doi: 10.1038/s42003-024-07223-0.

本文引用的文献

1
Brain aerobic glycolysis and resilience in Alzheimer disease.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2212256120. doi: 10.1073/pnas.2212256120. Epub 2023 Feb 6.
2
Brain connectomics: time for a molecular imaging perspective?
Trends Cogn Sci. 2023 Apr;27(4):353-366. doi: 10.1016/j.tics.2022.11.015. Epub 2023 Jan 6.
3
Modeling venous plasma samples in [F] FDG PET studies: a nonlinear mixed-effects approach.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:4704-4707. doi: 10.1109/EMBC48229.2022.9871429.
4
Image-derived Input Function in brain [F]FDG PET data: which alternatives to the carotid siphons?
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:243-246. doi: 10.1109/EMBC48229.2022.9871200.
5
First results on kinetic modelling and parametric imaging of dynamic F-FDG datasets from a long axial FOV PET scanner in oncological patients.
Eur J Nucl Med Mol Imaging. 2022 May;49(6):1997-2009. doi: 10.1007/s00259-021-05623-6. Epub 2022 Jan 4.
7
Total-Body PET Multiparametric Imaging of Cancer Using a Voxelwise Strategy of Compartmental Modeling.
J Nucl Med. 2022 Aug;63(8):1274-1281. doi: 10.2967/jnumed.121.262668. Epub 2021 Nov 18.
8
Mapping covariance in brain FDG uptake to structural connectivity.
Eur J Nucl Med Mol Imaging. 2022 Mar;49(4):1288-1297. doi: 10.1007/s00259-021-05590-y. Epub 2021 Oct 22.
9
The Human Connectome Project: A retrospective.
Neuroimage. 2021 Dec 1;244:118543. doi: 10.1016/j.neuroimage.2021.118543. Epub 2021 Sep 8.
10
Functionnectome as a framework to analyse the contribution of brain circuits to fMRI.
Commun Biol. 2021 Sep 2;4(1):1035. doi: 10.1038/s42003-021-02530-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验