Suppr超能文献

多模态脑龄预测:特征选择与比较

Multimodal Brain Age Prediction with Feature Selection and Comparison.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3858-3864. doi: 10.1109/EMBC46164.2021.9631007.

Abstract

Brain age, an estimated biological age from anatomical and/or functional brain imaging data, and its deviation from the chronological age (brain age gap) have shown the potential to serve as biomarkers for characterizing typical brain development, the abnormal aging process, and early indicators of clinical neuropsychiatric problems. In this study, we leverage multimodal brain imaging data for brain age prediction. We studied and compared the performance of individual data modalities (gray matter density in components and regions of interest, cortical and subcortical anatomical features, resting-state functional connectivity) and different combinations of multiple data modalities using data collected from 1417 participants with age between 8 and 22 years. The result indicates that feature selection and multimodal imaging data can improve brain age prediction with linear support vector and partial least squares regression models. We have achieved a mean absolute error of 1.22 years on the test data with 188 features selected equally from all data sources, better than any individual source. After bias correction, the brain age gap was significantly associated with attention accuracy/speed and motor speed in addition to age. Our results conclude that traditional machine learning with proper feature selection can achieve similar if not better performance compared to complex deep learning neural network methods for the used sample size.

摘要

脑龄是根据解剖和/或功能脑影像数据估算的生物学年龄,它与实际年龄(脑龄差距)之间的差异显示出作为生物标志物的潜力,可以用于描述典型的大脑发育、异常衰老过程以及临床神经精神问题的早期指标。在本研究中,我们利用多模态脑影像数据进行脑龄预测。我们研究并比较了单个数据模态(组成部分和感兴趣区域的灰质密度、皮质和皮质下解剖特征、静息态功能连接)以及使用来自 1417 名年龄在 8 至 22 岁之间的参与者的多模态数据的不同组合的性能。结果表明,特征选择和多模态影像数据可以使用线性支持向量机和偏最小二乘回归模型提高脑龄预测的准确性。我们在测试数据上实现了 1.22 年的平均绝对误差,使用从所有数据源中均等选择的 188 个特征,优于任何单个数据源。在进行偏差校正后,除了年龄外,脑龄差距还与注意力准确性/速度和运动速度显著相关。我们的研究结果表明,对于所使用的样本量,传统的机器学习与适当的特征选择相比,复杂的深度学习神经网络方法的性能可能相当甚至更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验