Suppr超能文献

多模态生物脑龄预测:磁共振成像和血管造影与预测区域的识别。

Multimodal biological brain age prediction using magnetic resonance imaging and angiography with the identification of predictive regions.

机构信息

Department of Radiology, University of Calgary, Calgary, Alberta, Canada.

Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.

出版信息

Hum Brain Mapp. 2022 Jun 1;43(8):2554-2566. doi: 10.1002/hbm.25805. Epub 2022 Feb 9.

Abstract

Biological brain age predicted using machine learning models based on high-resolution imaging data has been suggested as a potential biomarker for neurological and cerebrovascular diseases. In this work, we aimed to develop deep learning models to predict the biological brain age using structural magnetic resonance imaging and angiography datasets from a large database of 2074 adults (21-81 years). Since different imaging modalities can provide complementary information, combining them might allow to identify more complex aging patterns, with angiography data, for instance, showing vascular aging effects complementary to the atrophic brain tissue changes seen in T1-weighted MRI sequences. We used saliency maps to investigate the contribution of cortical, subcortical, and arterial structures to the prediction. Our results show that combining T1-weighted and angiography MR data led to a significantly improved brain age prediction accuracy, with a mean absolute error of 3.85 years comparing the predicted and chronological age. The most predictive brain regions included the lateral sulcus, the fourth ventricle, and the amygdala, while the brain arteries contributing the most to the prediction included the basilar artery, the middle cerebral artery M2 segments, and the left posterior cerebral artery. Our study proposes a framework for brain age prediction using multimodal imaging, which gives accurate predictions and allows identifying the most predictive regions for this task, which can serve as a surrogate for the brain regions that are most affected by aging.

摘要

基于高分辨率成像数据的机器学习模型预测生物脑龄,已被认为是神经和脑血管疾病的一种潜在生物标志物。在这项工作中,我们旨在开发深度学习模型,使用来自 2074 名成年人(21-81 岁)的大型数据库的结构磁共振成像和血管造影数据集来预测生物脑龄。由于不同的成像方式可以提供互补的信息,因此将它们结合起来可能可以识别更复杂的衰老模式,例如,血管造影数据显示的血管老化效应与 T1 加权 MRI 序列中观察到的脑萎缩组织变化互补。我们使用显著图来研究皮质、皮质下和动脉结构对预测的贡献。我们的结果表明,结合 T1 加权和血管造影 MR 数据可显著提高脑龄预测的准确性,预测年龄与实际年龄的平均绝对误差为 3.85 年。最具预测性的大脑区域包括外侧裂、第四脑室和杏仁核,而对预测贡献最大的大脑动脉包括基底动脉、大脑中动脉 M2 段和左侧大脑后动脉。我们的研究提出了一种使用多模态成像进行脑龄预测的框架,该框架可提供准确的预测,并可识别出最适合这项任务的预测区域,这些区域可以作为受衰老影响最大的大脑区域的替代物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52b1/9057090/f61bc500ac41/HBM-43-2554-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验