Suppr超能文献

基于深度学习的 B 型主动脉夹层真腔、假腔和假腔血栓的 3D 分割。

Deep Learning-Based 3D Segmentation of True Lumen, False Lumen, and False Lumen Thrombosis in Type-B Aortic Dissection.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3912-3915. doi: 10.1109/EMBC46164.2021.9631067.

Abstract

Patients with initially uncomplicated typeB aortic dissection (uTBAD) remain at high risk for developing late complications. Identification of morphologic features for improving risk stratification of these patients requires automated segmentation of computed tomography angiography (CTA) images. We developed three segmentation models utilizing a 3D residual U-Net for segmentation of the true lumen (TL), false lumen (FL), and false lumen thrombosis (FLT). Model 1 segments all labels at once, whereas model 2 segments them sequentially. Best results for TL and FL segmentation were achieved by model 2, with median (interquartiles) Dice similarity coefficients (DSC) of 0.85 (0.77-0.88) and 0.84 (0.82-0.87), respectively. For FLT segmentation, model 1 was superior to model 2, with median (interquartiles) DSCs of 0.63 (0.40-0.78). To purely test the performance of the network to segment FLT, a third model segmented FLT starting from the manually segmented FL, resulting in median (interquartiles) DSCs of 0.99 (0.98-0.99) and 0.85 (0.73-0.94) for patent FL and FLT, respectively. While the ambiguous appearance of FLT on imaging remains a significant limitation for accurate segmentation, our pipeline has the potential to help in segmentation of aortic lumina and thrombosis in uTBAD patients.Clinical relevance- Most predictors of aortic dissection (AD) degeneration are identified through anatomical modeling, which is currently prohibitive in clinical settings due to the timeintense human interaction. False lumen thrombosis, which often develops in patients with type B AD, has proven to show significant prognostic value for predicting late adverse events. Our automated segmentation algorithm offers the potential of personalized treatment for AD patients, leading to an increase in long-term survival.

摘要

最初表现为非复杂性 B 型主动脉夹层(uTBAD)的患者仍然存在发生晚期并发症的高风险。需要自动分割 CT 血管造影(CTA)图像,以识别形态特征来改善这些患者的风险分层。我们开发了三种分割模型,利用三维残差 U-Net 对真腔(TL)、假腔(FL)和假腔血栓(FLT)进行分割。模型 1 一次分割所有标签,而模型 2 则顺序分割它们。对于 TL 和 FL 的分割,模型 2 的效果最佳,其 Dice 相似系数(DSC)中位数(四分位间距)分别为 0.85(0.77-0.88)和 0.84(0.82-0.87)。对于 FLT 的分割,模型 1 优于模型 2,其 DSC 中位数(四分位间距)分别为 0.63(0.40-0.78)。为了纯粹测试网络分割 FLT 的性能,第三个模型从手动分割的 FL 开始分割 FLT,结果显示,对于开放的 FL 和 FLT,其 DSC 中位数(四分位间距)分别为 0.99(0.98-0.99)和 0.85(0.73-0.94)。尽管 FLT 在影像学上的模糊表现仍然是准确分割的一个重大限制,但我们的流水线有可能帮助分割 uTBAD 患者的主动脉腔和血栓。临床意义- 主动脉夹层(AD)退变的大多数预测因子都是通过解剖建模来识别的,由于需要大量的人机交互,目前在临床环境中是不可行的。假腔血栓形成,在 B 型 AD 患者中经常发生,已被证明对预测晚期不良事件具有显著的预后价值。我们的自动分割算法为 AD 患者提供了个性化治疗的潜力,从而提高了长期生存率。

相似文献

1
Deep Learning-Based 3D Segmentation of True Lumen, False Lumen, and False Lumen Thrombosis in Type-B Aortic Dissection.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3912-3915. doi: 10.1109/EMBC46164.2021.9631067.
2
Volumetric analysis of type B aortic dissections treated with thoracic endovascular aortic repair.
J Vasc Surg. 2011 Oct;54(4):985-92; discussion 992. doi: 10.1016/j.jvs.2011.03.263. Epub 2011 Sep 13.
4
Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning.
Eur J Radiol. 2019 Dec;121:108713. doi: 10.1016/j.ejrad.2019.108713. Epub 2019 Oct 17.
5
Risk factors for incomplete thrombosis in false lumen in sub-acute type B aortic dissection post-TEVAR.
Heart Vessels. 2022 Mar;37(3):505-512. doi: 10.1007/s00380-021-01926-8. Epub 2021 Aug 20.
6
Automatic segmentation of thrombosed aortic dissection in post-operative CT-angiography images.
Med Phys. 2023 Jun;50(6):3538-3548. doi: 10.1002/mp.16169. Epub 2023 Jan 7.
7
Automatic Segmentation of Type A Aortic Dissection on Computed Tomography Images Using Deep Learning Approach.
Diagnostics (Basel). 2024 Jun 23;14(13):1332. doi: 10.3390/diagnostics14131332.
8
ImageTBAD: A 3D Computed Tomography Angiography Image Dataset for Automatic Segmentation of Type-B Aortic Dissection.
Front Physiol. 2021 Sep 27;12:732711. doi: 10.3389/fphys.2021.732711. eCollection 2021.
9
False lumen intervention to promote remodelling and thrombosis-The FLIRT concept in aortic dissection.
Catheter Cardiovasc Interv. 2018 Oct 1;92(4):732-740. doi: 10.1002/ccd.27599. Epub 2018 Mar 30.

引用本文的文献

1
Predicting Late Adverse Events in Uncomplicated Stanford Type B Aortic Dissection: Results From the ROADMAP Validation Study.
Circ Cardiovasc Imaging. 2025 Feb;18(2):e016766. doi: 10.1161/CIRCIMAGING.124.016766. Epub 2025 Feb 18.
3
Automatic Segmentation of Type A Aortic Dissection on Computed Tomography Images Using Deep Learning Approach.
Diagnostics (Basel). 2024 Jun 23;14(13):1332. doi: 10.3390/diagnostics14131332.
4
Emerging role of radiogenomics in genetically triggered thoracic aortic aneurysm and dissection: a narrative review.
Ann Transl Med. 2023 Aug 30;11(10):356. doi: 10.21037/atm-22-6149. Epub 2023 Apr 17.
6
ADSeg: A flap-attention-based deep learning approach for aortic dissection segmentation.
Patterns (N Y). 2023 Apr 14;4(5):100727. doi: 10.1016/j.patter.2023.100727. eCollection 2023 May 12.
7
Registry of Aortic Diseases to Model Adverse Events and Progression (ROADMAP) in Uncomplicated Type B Aortic Dissection: Study Design and Rationale.
Radiol Cardiothorac Imaging. 2022 Dec 22;4(6):e220039. doi: 10.1148/ryct.220039. eCollection 2022 Dec.
8
Artificial Intelligence Applications in Aortic Dissection Imaging.
Semin Roentgenol. 2022 Oct;57(4):357-363. doi: 10.1053/j.ro.2022.07.001. Epub 2022 Jul 30.

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
2
CT-based True- and False-Lumen Segmentation in Type B Aortic Dissection Using Machine Learning.
Radiol Cardiothorac Imaging. 2020 Jun 25;2(3):e190179. doi: 10.1148/ryct.2020190179. eCollection 2020 Jun.
3
Multi-stage learning for segmentation of aortic dissections using a prior aortic anatomy simplification.
Med Image Anal. 2021 Apr;69:101931. doi: 10.1016/j.media.2020.101931. Epub 2020 Dec 18.
4
Detection, segmentation, simulation and visualization of aortic dissections: A review.
Med Image Anal. 2020 Oct;65:101773. doi: 10.1016/j.media.2020.101773. Epub 2020 Jul 7.
5
Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning.
Eur J Radiol. 2019 Dec;121:108713. doi: 10.1016/j.ejrad.2019.108713. Epub 2019 Oct 17.
6
Current evidence in predictors of aortic growth and events in acute type B aortic dissection.
J Vasc Surg. 2018 Dec;68(6):1925-1935.e8. doi: 10.1016/j.jvs.2018.05.232. Epub 2018 Aug 13.
8
Treatment of acute type-B aortic dissection: thoracic endovascular aortic repair or medical management alone?
JACC Cardiovasc Interv. 2013 Feb;6(2):185-91. doi: 10.1016/j.jcin.2012.11.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验