Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3912-3915. doi: 10.1109/EMBC46164.2021.9631067.
Patients with initially uncomplicated typeB aortic dissection (uTBAD) remain at high risk for developing late complications. Identification of morphologic features for improving risk stratification of these patients requires automated segmentation of computed tomography angiography (CTA) images. We developed three segmentation models utilizing a 3D residual U-Net for segmentation of the true lumen (TL), false lumen (FL), and false lumen thrombosis (FLT). Model 1 segments all labels at once, whereas model 2 segments them sequentially. Best results for TL and FL segmentation were achieved by model 2, with median (interquartiles) Dice similarity coefficients (DSC) of 0.85 (0.77-0.88) and 0.84 (0.82-0.87), respectively. For FLT segmentation, model 1 was superior to model 2, with median (interquartiles) DSCs of 0.63 (0.40-0.78). To purely test the performance of the network to segment FLT, a third model segmented FLT starting from the manually segmented FL, resulting in median (interquartiles) DSCs of 0.99 (0.98-0.99) and 0.85 (0.73-0.94) for patent FL and FLT, respectively. While the ambiguous appearance of FLT on imaging remains a significant limitation for accurate segmentation, our pipeline has the potential to help in segmentation of aortic lumina and thrombosis in uTBAD patients.Clinical relevance- Most predictors of aortic dissection (AD) degeneration are identified through anatomical modeling, which is currently prohibitive in clinical settings due to the timeintense human interaction. False lumen thrombosis, which often develops in patients with type B AD, has proven to show significant prognostic value for predicting late adverse events. Our automated segmentation algorithm offers the potential of personalized treatment for AD patients, leading to an increase in long-term survival.
最初表现为非复杂性 B 型主动脉夹层(uTBAD)的患者仍然存在发生晚期并发症的高风险。需要自动分割 CT 血管造影(CTA)图像,以识别形态特征来改善这些患者的风险分层。我们开发了三种分割模型,利用三维残差 U-Net 对真腔(TL)、假腔(FL)和假腔血栓(FLT)进行分割。模型 1 一次分割所有标签,而模型 2 则顺序分割它们。对于 TL 和 FL 的分割,模型 2 的效果最佳,其 Dice 相似系数(DSC)中位数(四分位间距)分别为 0.85(0.77-0.88)和 0.84(0.82-0.87)。对于 FLT 的分割,模型 1 优于模型 2,其 DSC 中位数(四分位间距)分别为 0.63(0.40-0.78)。为了纯粹测试网络分割 FLT 的性能,第三个模型从手动分割的 FL 开始分割 FLT,结果显示,对于开放的 FL 和 FLT,其 DSC 中位数(四分位间距)分别为 0.99(0.98-0.99)和 0.85(0.73-0.94)。尽管 FLT 在影像学上的模糊表现仍然是准确分割的一个重大限制,但我们的流水线有可能帮助分割 uTBAD 患者的主动脉腔和血栓。临床意义- 主动脉夹层(AD)退变的大多数预测因子都是通过解剖建模来识别的,由于需要大量的人机交互,目前在临床环境中是不可行的。假腔血栓形成,在 B 型 AD 患者中经常发生,已被证明对预测晚期不良事件具有显著的预后价值。我们的自动分割算法为 AD 患者提供了个性化治疗的潜力,从而提高了长期生存率。