Suppr超能文献

痴呆症中脑网络的结构靶点可控性。

Structural Target Controllability of Brain Networks in Dementia.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:3978-3981. doi: 10.1109/EMBC46164.2021.9630496.

Abstract

Controlling the dynamics of large-scale neural circuits might play an important role in aberrant cognitive functioning as found in Alzheimer's disease (AD). Analyzing the disease trajectory changes is of critical relevance when we want to get an understanding of the neurodegenerative disease evolution. Advanced control theory offers a multitude of techniques and concepts that can be easily translated into the dynamic processes governing disease evolution at the patient level, treatment response evaluation and revealing some central mechanisms in brain connectomic networks that drive alterations in these diseases. Two types of controllability - the modal and average controllability - have been applied in brain research to provide the mechanistic explanation of how the brain operates in different cognitive states. In this paper, we apply the concept of target controllability to structural (MRI) connectivity graphs for control (CN), mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. In target controllability, only a subset of the network states are steered towards a desired objective. We show the graph-theoretic necessary and sufficient conditions for the structural target controllability of the above-mentioned brain networks and demonstrate that only local topological information is needed for its verification. Certain areas of the brain and corresponding to nodes in the brain network graphs can act as drivers and move the system (brain) into specific states of action. We select first the drivers that ensures the controllability of these networks and since they do not represent the smallest set, we employ the concept of structural target controllability to determine those nodes that can steer a collection of states being representative for the transitions between CN, MCI and AD networks. Our results applied on structural brain networks in dementia suggest that this novel technique can accurately describe the different node roles in controlling trajectories of brain networks and being relevant for disease evolution.

摘要

控制大规模神经回路的动力学可能在阿尔茨海默病(AD)等异常认知功能中发挥重要作用。当我们想要了解神经退行性疾病的演变时,分析疾病轨迹变化至关重要。先进的控制理论提供了多种技术和概念,可以很容易地转化为控制疾病演变、评估治疗反应和揭示大脑连接网络中导致这些疾病变化的核心机制的患者水平上的动态过程。两种类型的可控性 - 模态可控性和平均可控性 - 已应用于大脑研究,以提供大脑在不同认知状态下运行的机制解释。在本文中,我们将目标可控性的概念应用于结构(MRI)连接图,用于控制(CN)、轻度认知障碍(MCI)和阿尔茨海默病(AD)患者。在目标可控性中,只有网络状态的子集被引导到期望的目标。我们展示了上述大脑网络结构目标可控性的图论必要和充分条件,并证明仅需要局部拓扑信息即可验证其。大脑的某些区域和对应于大脑网络图中的节点可以充当驱动器并将系统(大脑)移动到特定的动作状态。我们首先选择确保这些网络可控性的驱动器,由于它们不代表最小集,因此我们采用结构目标可控性的概念来确定那些可以引导代表 CN、MCI 和 AD 网络之间转换的状态集合的节点。我们在痴呆症结构大脑网络上的结果表明,这种新技术可以准确描述控制大脑网络轨迹的不同节点角色,并且与疾病演变相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验