Suppr超能文献

基于胶囊神经网络的深度表型细胞分类。

Deep Phenotypic Cell Classification using Capsule Neural Network.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4031-4036. doi: 10.1109/EMBC46164.2021.9629862.

Abstract

Recent developments in ultra-high-throughput microscopy have created a new generation of cell classification methodologies focused solely on image-based cell phenotypes. These image-based analyses enable morphological profiling and screening of thousands or even millions of single cells at a fraction of the cost. They have been shown to demonstrate the statistical significance required for understanding the role of cell heterogeneity in diverse biologists. However, these single-cell analysis techniques are slow and require expensive genetic/epigenetic analysis. This treatise proposes an innovative DL system based on the newly created capsule networks (CapsNet) architecture. The proposed deep CapsNet model employs "Capsules" for high-level feature abstraction relevant to the cell category. Experiments demonstrate that our proposed system can accurately classify different types of cells based on phenotypic label-free bright-field images with over 98.06% accuracy and that deep CapsNet models outperform CNN models in the prior art.

摘要

最近超高速显微镜技术的发展创造了新一代专注于基于图像的细胞表型的细胞分类方法。这些基于图像的分析能够对数千甚至数百万个单细胞进行形态分析和筛选,成本仅为其一小部分。这些方法已经证明在理解细胞异质性在不同生物学中的作用方面具有统计学意义。然而,这些单细胞分析技术速度较慢,需要昂贵的遗传/表观遗传分析。本文提出了一种基于新创建的胶囊网络 (CapsNet) 架构的创新深度学习系统。所提出的深度 CapsNet 模型使用“胶囊”对与细胞类别相关的高级特征进行抽象。实验表明,我们提出的系统可以基于无标签的明场细胞图像以超过 98.06%的准确率准确地对不同类型的细胞进行分类,并且深度 CapsNet 模型在先前技术中的 CNN 模型表现更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验