Suppr超能文献

开发一种用于超长轴向视野 PET 扫描仪的 CT 自由校正的深度学习方法。

Development of a deep learning method for CT-free correction for an ultra-long axial field of view PET scanner.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4120-4122. doi: 10.1109/EMBC46164.2021.9630590.

Abstract

INTRODUCTION

The possibility of low-dose positron emission tomography (PET) imaging using high sensitivity long axial field of view (FOV) PET/computed tomography (CT) scanners makes CT a critical radiation burden in clinical applications. Artificial intelligence has shown the potential to generate PET images from non-corrected PET images. Our aim in this work is to develop a CT-free correction for a long axial FOV PET scanner.

METHODS

Whole body PET images of 165 patients scanned with a digital regular FOV PET scanner (Biograph Vision 600 (Siemens Healthineers) in Shanghai and Bern) was included for the development and testing of the deep learning methods. Furthermore, the developed algorithm was tested on data of 7 patients scanned with a long axial FOV scanner (Biograph Vision Quadra, Siemens Healthineers). A 2D generative adversarial network (GAN) was developed featuring a residual dense block, which enables the model to fully exploit hierarchical features from all network layers. The normalized root mean squared error (NRMSE) and peak signal-to-noise ratio (PSNR), were calculated to evaluate the results generated by deep learning.

RESULTS

The preliminary results showed that, the developed deep learning method achieved an average NRMSE of 0.4±0.3% and PSNR of 51.4±6.4 for the test on Biograph Vision, and an average NRMSE of 0.5±0.4% and PSNR of 47.9±9.4 for the validation on Biograph Vision Quadra, after applied transfer learning.

CONCLUSION

The developed deep learning method shows the potential for CT-free AI-correction for a long axial FOV PET scanner. Work in progress includes clinical assessment of PET images by independent nuclear medicine physicians. Training and fine-tuning with more datasets will be performed to further consolidate the development.

摘要

简介

使用高灵敏度长轴向视野(FOV)正电子发射断层扫描(PET)/计算机断层扫描(CT)扫描仪进行低剂量 PET 成像的可能性使得 CT 在临床应用中成为一个关键的辐射负担。人工智能已显示出从未经校正的 PET 图像生成 PET 图像的潜力。我们在这项工作中的目标是为长轴向 FOV PET 扫描仪开发一种无 CT 校正方法。

方法

我们纳入了 165 名患者的全身 PET 图像,这些患者使用数字常规 FOV PET 扫描仪(上海和伯尔尼的 Biograph Vision 600(西门子医疗))进行了扫描,用于开发和测试深度学习方法。此外,还在使用长轴向 FOV 扫描仪(西门子医疗的 Biograph Vision Quadra)扫描的 7 名患者的数据上测试了开发的算法。我们开发了一种具有残差密集块的 2D 生成对抗网络(GAN),该网络使模型能够充分利用来自所有网络层的分层特征。使用归一化均方根误差(NRMSE)和峰值信噪比(PSNR)来评估深度学习生成的结果。

结果

初步结果表明,在对 Biograph Vision 的测试中,开发的深度学习方法在应用迁移学习后平均实现了 0.4±0.3%的 NRMSE 和 51.4±6.4 的 PSNR,在对 Biograph Vision Quadra 的验证中平均实现了 0.5±0.4%的 NRMSE 和 47.9±9.4 的 PSNR。

结论

开发的深度学习方法显示出在长轴向 FOV PET 扫描仪中进行无 CT 的 AI 校正的潜力。正在进行的工作包括由独立的核医学医生对 PET 图像进行临床评估。将使用更多数据集进行培训和微调,以进一步巩固开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验