Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4649-4653. doi: 10.1109/EMBC46164.2021.9629542.
Several recent research efforts have shown that the bioelectrical stimulation of their neuro-mechanical system can control the locomotion of Madagascar hissing cockroaches (Gromphadorhina portentosa). This has opened the possibility of using these insects to explore centimeter-scale environments, such as rubble piles in urban disaster areas. We present an inertial navigation system based on machine learning modules that is capable of localizing groups of G. portentosa carrying thorax-mounted inertial measurement units. The proposed navigation system uses the agents' encounters with one another as signals of opportunity to increase tracking accuracy. Results are shown for five agents that are operating on a planar (2D) surface in controlled laboratory conditions. Trajectory reconstruction accuracy is improved by 16% when we use encounter information for the agents, and up to 27% when we add a heuristic that corrects speed estimates via a search for an optimal speed-scaling factor.
最近的几项研究表明,对其神经机械系统进行生物电刺激可以控制马达加斯加发声蟑螂(Gromphadorhina portentosa)的运动。这为利用这些昆虫探索厘米级环境(如城市灾区的瓦砾堆)提供了可能。我们提出了一种基于机器学习模块的惯性导航系统,能够对携带胸部安装惯性测量单元的 G. portentosa 群体进行定位。所提出的导航系统利用代理之间的相遇作为机会信号来提高跟踪精度。在受控实验室条件下,在平面(2D)表面上运行的五个代理的结果显示。当我们使用代理的相遇信息时,轨迹重建精度提高了 16%,当我们添加一个启发式算法通过搜索最佳速度缩放因子来校正速度估计时,精度提高了 27%。