Suppr超能文献

基于深度学习的柔性机器人运动学约束建模。

Kinematics Constraint Modeling for Flexible Robots based on Deep Learning.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:4940-4943. doi: 10.1109/EMBC46164.2021.9630418.

Abstract

Application of flexible robotic systems and teleoperated control recently used in minimally invasive surgery have introduced paradigm shift in interventional surgery. While Prototypes of flexible robots have been proposed for surgical diagnostic and treatments, precise constraint control models are still needed for flexible pathway navigation. In this paper, a deep learning based kinematics model is proposed for motion control of flexible robots. Unlike previous approach, this study utilized the different layers of deep learning system for learning the best features to predict the damping value for each point in the robot's workspace. The method uses differential Jacobian to solve IK for given targets. Optimal damping factor that converges precisely around given target is rapidly predicted by a DNN. Simulation of the robot and implementation of the proposed control models are done in V-rep and Python. Validation with arbitrary points shows the deep-learning approach requires an average of 26.50 iterations, a mean error of 0.838, and an execution time of 3.6 ms for IK of single point; and converges faster than other existing methods.

摘要

最近在微创手术中应用的柔性机器人系统和遥操作控制技术,为介入性手术带来了范式转变。虽然已经提出了用于手术诊断和治疗的柔性机器人原型,但仍需要精确的约束控制模型来进行柔性路径导航。在本文中,提出了一种基于深度学习的运动学模型,用于柔性机器人的运动控制。与以往的方法不同,本研究利用深度学习系统的不同层来学习最佳特征,以预测机器人工作空间中每个点的阻尼值。该方法使用微分雅可比矩阵来解决给定目标的逆运动学问题。通过 DNN 快速预测精确收敛到给定目标的最优阻尼因子。在 V-rep 和 Python 中对机器人进行仿真和实现提出的控制模型。对任意点的验证表明,深度学习方法在单个点的逆运动学中需要平均 26.50 次迭代、平均误差 0.838 和 3.6 毫秒的执行时间;并且比其他现有方法收敛得更快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验