Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:6171-6174. doi: 10.1109/EMBC46164.2021.9629580.
Upper-limb prosthetic control is often challenging and non-intuitive, leading to up to 50% of prostheses users abandoning their prostheses. Convolutional neural networks (CNN) and recurrent long short-term memory (LSTM) networks have shown promise in extracting high-degree-of-freedom motor intent from myoelectric signals, thereby providing more intuitive and dexterous prosthetic control. An important next consideration for these algorithms is if performance remains stable over multiple days. Here we introduce a new LSTM network and compare its performance to previously established state-of-the-art algorithms-a CNN and a modified Kalman filter (MKF)-in offline analyses using 76 days of intramuscular recordings from one amputee participant collected over 425 calendar days. Specifically, we assessed the robustness of each algorithm over time by training on data from the first (one, five, ten, 30, or 60) days and then testing on myoelectric signals on the last 16 days. Results indicate that training on additional datasets from prior days generally decreases the Root Mean Squared Error (RMSE) of intended and unintended movements for all algorithms. Across all algorithms trained with 60 days of data, the lowest RMSE for unintended movements was achieved with the LSTM. The LSTM also showed less across-day variance in RMSE of unintended movements relative to the other algorithms. Altogether this work suggests that the LSTM algorithm introduced here can provide more intuitive and dexterous control for prosthetic users, and that training on multiple days of data improves overall performance on subsequent days, at least for offline analyses.
上肢假肢控制通常具有挑战性且不够直观,这导致多达 50%的假肢使用者放弃使用他们的假肢。卷积神经网络 (CNN) 和递归长短期记忆 (LSTM) 网络已显示出从肌电信号中提取高自由度运动意图的潜力,从而提供更直观和灵活的假肢控制。这些算法的下一个重要考虑因素是它们的性能是否在多天内保持稳定。在这里,我们引入了一个新的 LSTM 网络,并将其性能与以前建立的最先进算法——CNN 和改进的卡尔曼滤波器 (MKF)——进行了比较,这些算法是在一名截肢参与者的 76 天肌内记录中离线分析的,这些记录是在 425 个日历日内收集的。具体来说,我们通过在第一天 (一、五、十、三十或六十天) 的数据上进行训练,然后在最后 16 天的肌电信号上进行测试,来评估每个算法随时间的稳健性。结果表明,对前几天的其他数据集进行训练通常会降低所有算法对有意和无意运动的均方根误差 (RMSE)。在所有使用 60 天数据进行训练的算法中,LSTM 实现了最低的无意运动 RMSE。与其他算法相比,LSTM 还显示出无意运动 RMSE 的跨天方差更小。总的来说,这项工作表明,这里引入的 LSTM 算法可以为假肢使用者提供更直观和灵活的控制,并且对多天数据进行训练可以提高后续几天的整体性能,至少在离线分析中是这样。