Zaman Shahid, Su Ya-Qiong, Dong Chung-Li, Qi Ruijuan, Huang Lei, Qin Yanyang, Huang Yu-Cheng, Li Fu-Min, You Bo, Guo Wei, Li Qing, Ding Shujiang, Yu Xia Bao
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiao Tong University, Xi An Shi, Xi'an, 710049, China.
Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202115835. doi: 10.1002/anie.202115835. Epub 2021 Dec 21.
Fuel cells are considered as a promising alternative to the existing traditional energy systems towards a sustainable future. Nevertheless, the synthesis of efficient and robust platinum (Pt) based catalysts remains a challenge for practical applications. In this work, we present a simple and scalable molten-salt synthesis method for producing a low-platinum (Pt) nanoalloy implanted in metal-nitrogen-graphene. The as-prepared low-Pt alloyed graphene exhibits a high oxygen reduction activity of 1.29 A mg and excellent durability over 30 000 potential cycles. The catalyst nanoarchitecture of graphene encased Pt nanoalloy provides a robust capability against nanoparticle migration and corrosion due to a strong metal-support interaction. Similarly, advanced characterization and theoretical calculations show that the multiple active sites in platinum alloyed graphene synergistically account for the improved oxygen reduction. This work not only provides an efficient and robust low-Pt catalyst but also a facile design idea and scalable preparation technique for integrated catalysts to achieve more profound applications in fuel cells and beyond.
对于实现可持续未来而言,燃料电池被视为现有传统能源系统的一种有前景的替代方案。然而,合成高效且稳定的铂(Pt)基催化剂在实际应用中仍是一项挑战。在这项工作中,我们提出了一种简单且可扩展的熔盐合成方法,用于制备植入金属 - 氮 - 石墨烯中的低铂(Pt)纳米合金。所制备的低铂合金化石墨烯展现出1.29 A mg的高氧还原活性以及在超过30000次电位循环中的优异耐久性。石墨烯包裹的铂纳米合金的催化剂纳米结构由于强大的金属 - 载体相互作用而具有强大的抗纳米颗粒迁移和抗腐蚀能力。同样,先进的表征和理论计算表明,铂合金化石墨烯中的多个活性位点协同作用,促成了氧还原性能的提升。这项工作不仅提供了一种高效且稳定的低铂催化剂,还为集成催化剂提供了一种简便的设计理念和可扩展的制备技术,以在燃料电池及其他领域实现更深入的应用。