Suppr超能文献

微生物共生促进竞争物种共存:两种竞争宿主和一种微生物物种的双层模型。

Microbial mutualism promoting the coexistence of competing species: Double-layer model for two competing hosts and one microbial species.

机构信息

Fisheries Resources Institute, Japan Fisheries Research and Education Agency, 2-12-4, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.

Department of Physics and Mathematics, Aoyama Gakuin University, Fuchinobe, ChuoKu, Sagamihara-shi, Kanagawa, 252-5258, Japan.

出版信息

Biosystems. 2022 Jan;211:104589. doi: 10.1016/j.biosystems.2021.104589. Epub 2021 Dec 9.

Abstract

Gause's law of competitive exclusion holds that the coexistence of competing species is extremely unlikely when niches are not differentiated. This law is supported by many mathematical studies, yet the coexistence of competing species is nearly ubiquitous in real ecosystems. We pay attention to the fact that plants and animals usually contact with microbial species as mutualistic partners. The activity spaces of host species are different from those of micro-organisms. In the present study, we apply double-layer model to the association of two competing hosts and a microorganism. Two lattices are prepared: one is for hosts, and the other is for microorganism. The basic equation obtained by mean-field theory is an extension of Lotka-Volterra competition model. Both mathematical analysis and numerical simulations reveal that a shared microbial mutualist can permit the coexistence of competing hosts. From the derived condition of coexistence, we believe the microbial mutualism promotes biodiversity in many ecological systems.

摘要

高斯竞争排除定律认为,当生态位没有分化时,竞争物种共存的可能性极小。这一定律得到了许多数学研究的支持,但在现实生态系统中,竞争物种的共存几乎无处不在。我们注意到植物和动物通常与微生物物种作为互利共生伙伴接触。宿主物种的活动空间与微生物物种的活动空间不同。在本研究中,我们将双层模型应用于两种竞争宿主和一种微生物的相互作用中。准备了两个格子:一个用于宿主,另一个用于微生物。通过平均场理论得到的基本方程是洛特卡-沃尔泰拉竞争模型的扩展。数学分析和数值模拟都表明,一个共享的微生物共生体可以允许竞争的宿主共存。从共存的推导条件来看,我们相信微生物共生体促进了许多生态系统的生物多样性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验