NORCE Norwegian Research Centre, Bergen, Norway.
NORCE Norwegian Research Centre, Bergen, Norway.
Sci Total Environ. 2022 Mar 1;810:152238. doi: 10.1016/j.scitotenv.2021.152238. Epub 2021 Dec 9.
Monitoring environmental status through molecular investigation of microorganisms in the marine environment is suggested as a potentially very effective method for biomonitoring, with great potential for automation. There are several hurdles to that approach with regards to primer design, variability across geographical locations, seasons, and type of environmental pollution. Here, qPCR analysis of genes involved in the initial activation of aliphatic and aromatic hydrocarbons were used in a laboratory setup mimicking realistic oil leakage at sea. Seawater incubation experiments were carried out under two different seasons with two different oil types. Degenerate primers targeting initial oxygenases (alkane 1-monooxygenase; alkB and aromatic-ring hydroxylating dioxygenase; ARHD) were employed in qPCR assays to quantify the abundance of genes essential for oil degradation. Shotgun metagenomics was used to map the overall community dynamics and the diversity of alkB and ARHD genes represented in the microbial community. The amplicons generated through the qPCR assays were sequenced to reveal the diversity of oil-degradation related genes captured by the degenerate primers. We identified a major mismatch between the taxonomic diversity of alkB and ARHD genes amplified by the degenerate primers and those identified through shotgun metagenomics. More specifically, the designed primers did not amplify the alkB genes of the two most abundant alkane degraders that bloomed in the experiments, Oceanobacter and Oleispira. The relative abundance of alkB sequences from shotgun metagenomics and 16S rRNA-based Oleispira-specific qPCR assay were better signals for oil in water than the tested qPCR alkB assay. The ARHD assay showed a good agreement with PAHs degradation despite covering only 25% of the top 100 ARHD genes and missing several abundant Cycloclasticus sequences that were present in the metagenome. We conclude that further improvement of the degenerate primer approach is needed to rely on the use of oxygenase-related qPCR assays for oil leakage detection.
通过对海洋环境中的微生物进行分子调查来监测环境状况,被认为是一种很有前途的生物监测方法,具有很大的自动化潜力。然而,这种方法在引物设计、地理位置、季节和环境污染类型的变异性方面存在一些障碍。在这里,我们使用 qPCR 分析了参与初始激活脂肪族和芳香族烃的基因,该方法在模拟海上真实漏油的实验室设置中进行。在两个不同的季节进行了海水孵育实验,使用了两种不同的油类型。我们使用了针对初始加氧酶(烷烃 1-单加氧酶;alkB 和芳香环羟化双加氧酶;ARHD)的简并引物进行 qPCR 分析,以定量降解石油所需的基因丰度。我们使用鸟枪法宏基因组学来绘制微生物群落的整体动态和 alkB 和 ARHD 基因的多样性。通过 qPCR 分析产生的扩增子被测序,以揭示通过简并引物捕获的与石油降解相关的基因多样性。我们发现通过简并引物扩增的 alkB 和 ARHD 基因的分类多样性与通过鸟枪法宏基因组学鉴定的基因多样性之间存在很大的不匹配。具体来说,设计的引物不能扩增实验中最丰富的两种烷烃降解菌 Oceanobacter 和 Oleispira 的 alkB 基因。来自鸟枪法宏基因组学和基于 16S rRNA 的 Oleispira 特异性 qPCR 分析的 alkB 序列的相对丰度比测试的 qPCR alkB 分析更能反映水中的石油。尽管 ARHD 分析仅涵盖了前 100 个 ARHD 基因的 25%,并且错过了一些在宏基因组中存在的丰富的 Cycloclasticus 序列,但它与多环芳烃降解具有良好的一致性。我们得出的结论是,需要进一步改进简并引物方法,以依赖于使用与加氧酶相关的 qPCR 分析来检测石油泄漏。