Suppr超能文献

用光控制 PTP1B 的三种架构分析。

Analysis of Three Architectures for Controlling PTP1B with Light.

机构信息

Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States.

出版信息

ACS Synth Biol. 2022 Jan 21;11(1):61-68. doi: 10.1021/acssynbio.1c00398. Epub 2021 Dec 13.

Abstract

Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of screens to evaluate different optogenetic designs.

摘要

光感结构域是将蛋白质置于光控之下的有力工具,但将其整合到光敏感嵌合体中常常具有挑战性。许多设计需要结构迭代,而且替代方法的直接比较很少见。本研究使用蛋白酪氨酸磷酸酶 1B(PTP1B),一种有影响力的调节酶,比较了三种用光控制 PTP 的结构:蛋白融合、插入嵌合体和分裂构建体。所有三种设计都允许用光控制 PTP1B 的活性(即,对纯化酶进行动力学测定),并且在哺乳动物细胞中都可以进行;在两种条件下测量的光反应虽然幅度不同,但呈线性相关。基于融合和插入的结构表现出最高的动态范围,并在哺乳动物细胞中保持天然的定位模式。单一的插入结构能够对 PTP1B 和 TCPTP 进行光学控制,但对 SHP2 则不行,类似的嵌合体虽然有活性但不能光开关。研究结果表明,PTP 对结构域插入具有高度的耐受性,并支持使用筛选来评估不同的光遗传学设计。

相似文献

1
Analysis of Three Architectures for Controlling PTP1B with Light.
ACS Synth Biol. 2022 Jan 21;11(1):61-68. doi: 10.1021/acssynbio.1c00398. Epub 2021 Dec 13.
2
Optogenetic Analysis of Allosteric Control in Protein Tyrosine Phosphatases.
Biochemistry. 2021 Feb 2;60(4):254-258. doi: 10.1021/acs.biochem.0c00841. Epub 2021 Jan 15.
3
Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase.
J Biol Chem. 2008 Dec 5;283(49):34374-83. doi: 10.1074/jbc.M805916200. Epub 2008 Sep 26.
4
Evaluation of 147 Kampo prescriptions as novel protein tyrosine phosphatase 1B (PTP1B) inhibitory agents.
BMC Complement Altern Med. 2014 Feb 20;14:64. doi: 10.1186/1472-6882-14-64.
5
Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-β receptor tyrosine kinase signaling.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13398-403. doi: 10.1073/pnas.1302891110. Epub 2013 Jul 30.
6
Differential regulation of endoplasmic reticulum stress by protein tyrosine phosphatase 1B and T cell protein tyrosine phosphatase.
J Biol Chem. 2011 Mar 18;286(11):9225-35. doi: 10.1074/jbc.M110.186148. Epub 2011 Jan 7.
7
Probing the molecular basis for potent and selective protein-tyrosine phosphatase 1B inhibition.
J Biol Chem. 2002 Oct 25;277(43):41014-22. doi: 10.1074/jbc.M207347200. Epub 2002 Aug 21.

引用本文的文献

1
Orchestrating function: Concerted dynamics, allostery, and catalysis in protein tyrosine phosphatases.
Curr Opin Struct Biol. 2025 Aug 1;94:103125. doi: 10.1016/j.sbi.2025.103125.
2
Allosteric inactivation of an engineered optogenetic GTPase.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2219254120. doi: 10.1073/pnas.2219254120. Epub 2023 Mar 27.
3
Plug-and-Display Photo-Switchable Systems on Plant Virus Nanoparticles.
BioTech (Basel). 2022 Oct 21;11(4):49. doi: 10.3390/biotech11040049.
4
Design and engineering of light-sensitive protein switches.
Curr Opin Struct Biol. 2022 Jun;74:102377. doi: 10.1016/j.sbi.2022.102377. Epub 2022 Apr 20.

本文引用的文献

1
Circularly permuted LOV2 as a modular photoswitch for optogenetic engineering.
Nat Chem Biol. 2021 Aug;17(8):915-923. doi: 10.1038/s41589-021-00792-9. Epub 2021 May 6.
2
Optogenetic Analysis of Allosteric Control in Protein Tyrosine Phosphatases.
Biochemistry. 2021 Feb 2;60(4):254-258. doi: 10.1021/acs.biochem.0c00841. Epub 2021 Jan 15.
4
Minimally disruptive optical control of protein tyrosine phosphatase 1B.
Nat Commun. 2020 Feb 7;11(1):788. doi: 10.1038/s41467-020-14567-8.
5
Optical control of protein phosphatase function.
Nat Commun. 2019 Sep 26;10(1):4384. doi: 10.1038/s41467-019-12260-z.
6
Evolutionarily Conserved Allosteric Communication in Protein Tyrosine Phosphatases.
Biochemistry. 2018 Nov 13;57(45):6443-6451. doi: 10.1021/acs.biochem.8b00656. Epub 2018 Oct 26.
7
Computational design of chemogenetic and optogenetic split proteins.
Nat Commun. 2018 Oct 2;9(1):4042. doi: 10.1038/s41467-018-06531-4.
8
Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation.
Biochemistry. 2018 Oct 9;57(40):5886-5896. doi: 10.1021/acs.biochem.8b00655. Epub 2018 Sep 14.
9
Local control of intracellular microtubule dynamics by EB1 photodissociation.
Nat Cell Biol. 2018 Mar;20(3):252-261. doi: 10.1038/s41556-017-0028-5. Epub 2018 Jan 29.
10
Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins.
Biochemistry. 2017 Dec 19;56(50):6565-6574. doi: 10.1021/acs.biochem.7b00902. Epub 2017 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验