Suppr超能文献

在枯草芽孢杆菌中,RNA 聚合酶和 ResD 在近端和远端亚基上的不同相互作用机制,用于亚硝酸盐还原酶的转录激活。

Distinct Interaction Mechanism of RNA Polymerase and ResD at Proximal and Distal Subsites for Transcription Activation of Nitrite Reductase in Bacillus subtilis.

机构信息

Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon, USA.

Department of Pediatrics, University of Florida, Gainesville, Florida, USA.

出版信息

J Bacteriol. 2022 Feb 15;204(2):e0043221. doi: 10.1128/JB.00432-21. Epub 2021 Dec 13.

Abstract

The ResD-ResE signal transduction system plays a pivotal role in anaerobic nitrate respiration in Bacillus subtilis. The operon encoding nitrite reductase is essential for nitrate respiration and is tightly controlled by the ResD response regulator. To understand the mechanism of ResD-dependent transcription activation of the operon, we explored ResD-RNA polymerase (RNAP), ResD-DNA, and RNAP-DNA interactions required for transcription. Full transcriptional activation requires the upstream promoter region where five molecules of ResD bind. The distal ResD-binding subsite at -87 to -84 partially overlaps a sequence similar to the consensus distal subsite of the upstream (UP) element with which the Escherichia coli C-terminal domain of the α subunit (αCTD) of RNAP interacts to stimulate transcription. We propose that interaction between αCTD and ResD at the promoter-distal site is essential for stimulating transcription. Although has an extended -10 promoter, it lacks a reasonable -35 element. Genetic analysis and structural simulations predicted that the absence of the -35 element might be compensated by interactions between σ and αCTD and between αCTD and ResD at the promoter-proximal ResD-binding subsite. Thus, our work suggested that ResD participates in transcription activation by binding to two αCTD subunits at the proximal and distal promoter sites, representing a unique configuration for transcription activation. A significant number of ResD-controlled genes have been identified, and transcription regulatory pathways in which ResD participates have emerged. Nevertheless, the mechanism of how ResD activates transcription of different genes in a nucleotide sequence-specific manner has been less explored. This study suggested that among the five ResD-binding subsites in the promoter of the operon, the promoter-proximal and -distal ResD-binding subsites play important roles in activation by adapting different modes of protein-protein and protein-DNA interactions. The finding of a new type of protein-promoter architecture provides insight into the understanding of transcription activation mechanisms controlled by transcription factors, including the ubiquitous response regulators of two-component regulatory systems, particularly in Gram-positive bacteria.

摘要

ResD-ResE 信号转导系统在枯草芽孢杆菌的厌氧硝酸盐呼吸中起着关键作用。编码亚硝酸盐还原酶的操纵子对于硝酸盐呼吸是必不可少的,并且受到 ResD 应答调节剂的严格控制。为了了解 ResD 依赖的转录激活操纵子的机制,我们探索了 ResD-聚合酶(RNAP)、ResD-DNA 和 RNAP-DNA 相互作用,这些相互作用对于转录是必需的。完全转录激活需要结合五个 ResD 分子的上游启动子区域。-87 到-84 的远端 ResD 结合亚基部分重叠与大肠杆菌 RNAP 的 C 末端结构域(αCTD)相互作用以刺激转录的上游(UP)元件的远端亚基类似的序列。我们提出,启动子远端位点处的αCTD 与 ResD 之间的相互作用对于刺激转录至关重要。尽管 具有扩展的-10 启动子,但它缺乏合理的-35 元件。遗传分析和结构模拟预测,-35 元件的缺失可能通过 σ 和 αCTD 之间以及启动子近端 ResD 结合亚基处的 αCTD 和 ResD 之间的相互作用得到补偿。因此,我们的工作表明,ResD 通过与近端和远端启动子位点的两个 αCTD 亚基结合参与 转录激活,代表了一种独特的转录激活构型。已经鉴定出大量受 ResD 控制的基因,并且已经出现了 ResD 参与的转录调控途径。然而,ResD 如何以核苷酸序列特异性方式激活不同基因的转录的机制尚未得到充分探索。这项研究表明,在 操纵子启动子的五个 ResD 结合亚基中,启动子近端和远端 ResD 结合亚基通过适应不同的蛋白质-蛋白质和蛋白质-DNA 相互作用模式,在 激活中发挥重要作用。新型蛋白质启动子结构的发现为理解转录激活机制提供了新的思路,这些机制由转录因子控制,包括普遍存在的二组分调节系统的应答调节剂,特别是在革兰氏阳性菌中。

相似文献

2
枯草芽孢杆菌中ResD与厌氧诱导基因调控区域的相互作用。
Mol Microbiol. 2000 Sep;37(5):1198-207. doi: 10.1046/j.1365-2958.2000.02075.x.
3
两个受ResD调控的启动子在枯草芽孢杆菌中调控ctaA的表达。
J Bacteriol. 2001 May;183(10):3237-46. doi: 10.1128/JB.183.10.3237-3246.2001.
4
通过足迹法对枯草芽孢杆菌厌氧发酵生长过程中ResD、NsrR和Fur结合进行全基因组分析。
J Bacteriol. 2017 Jun 13;199(13). doi: 10.1128/JB.00086-17. Print 2017 Jul 1.
5
枯草芽孢杆菌有氧呼吸的ResD信号转导调节因子:ctaA启动子调控
Mol Microbiol. 2000 Sep;37(5):1208-19. doi: 10.1046/j.1365-2958.2000.02076.x.
8
枯草芽孢杆菌 NsrR 与 ResDE 控制的启动子的一氧化氮敏感和不敏感相互作用。
Mol Microbiol. 2010 Dec;78(5):1280-93. doi: 10.1111/j.1365-2958.2010.07407.x. Epub 2010 Oct 8.
9
枯草芽孢杆菌中ResDE依赖性fnr转录的表征
J Bacteriol. 2007 Mar;189(5):1745-55. doi: 10.1128/JB.01502-06. Epub 2006 Dec 22.

引用本文的文献

本文引用的文献

1
OmpR 响应调节子对启动子 DNA 识别的结构基础。
J Struct Biol. 2021 Mar;213(1):107638. doi: 10.1016/j.jsb.2020.107638. Epub 2020 Nov 3.
2
在大肠杆菌ogt 启动子上由 NarL 的激活作用。
Biochem J. 2020 Aug 14;477(15):2807-2820. doi: 10.1042/BCJ20200408.
3
逐步启动子熔解由细菌 RNA 聚合酶。
Mol Cell. 2020 Apr 16;78(2):275-288.e6. doi: 10.1016/j.molcel.2020.02.017. Epub 2020 Mar 10.
4
EnvZ/OmpR 双组分信号转导:一种可异常发挥功能的典型系统。
EcoSal Plus. 2020 Jan;9(1). doi: 10.1128/ecosalplus.ESP-0001-2019.
5
解析结核分枝杆菌转录起始复合物的 X 射线晶体结构。
Nat Commun. 2017 Jul 13;8:16072. doi: 10.1038/ncomms16072.
6
通过足迹法对枯草芽孢杆菌厌氧发酵生长过程中ResD、NsrR和Fur结合进行全基因组分析。
J Bacteriol. 2017 Jun 13;199(13). doi: 10.1128/JB.00086-17. Print 2017 Jul 1.
7
构建和分析枯草芽孢杆菌两个全基因组规模的缺失文库。
Cell Syst. 2017 Mar 22;4(3):291-305.e7. doi: 10.1016/j.cels.2016.12.013. Epub 2017 Feb 8.
8
PRODIGY:一个用于预测蛋白质-蛋白质复合物结合亲和力的网络服务器。
Bioinformatics. 2016 Dec 1;32(23):3676-3678. doi: 10.1093/bioinformatics/btw514. Epub 2016 Aug 8.
9
细菌转录作为抗菌药物开发的靶点
Microbiol Mol Biol Rev. 2016 Jan 13;80(1):139-60. doi: 10.1128/MMBR.00055-15. Print 2016 Mar.
10
HADDOCK2.2 网页服务器:生物分子复合物的用户友好型综合建模
J Mol Biol. 2016 Feb 22;428(4):720-725. doi: 10.1016/j.jmb.2015.09.014. Epub 2015 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验