IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1441-1453. doi: 10.1109/TBCAS.2021.3134660. Epub 2022 Feb 17.
This paper presents a spike sorting processor based on an accurate spike clustering algorithm. The proposed spike sorting algorithm employs an L2-normalized convolutional autoencoder to extract features from the input, where the autoencoder is trained using the proposed spike sorting-aware loss. In addition, we propose a similarity-based K-means clustering algorithm that conditionally updates the means by observing the cosine similarity. The modified K-means algorithm exhibits better convergence and enables online clustering with higher classification accuracy. We implement a spike sorting processor based on the proposed algorithm using an efficient time-multiplexed hardware architecture in a 40-nm CMOS process. Experimental results show that the processor consumes 224.75μW/mm when processing 16 input channels at 7.68 MHz and 0.55 V. Our design achieves 95.54% clustering accuracy, outperforming prior spike sorting processor designs.
本文提出了一种基于精确尖峰聚类算法的尖峰分选处理器。所提出的尖峰分选算法采用 L2 归一化卷积自动编码器从输入中提取特征,其中自动编码器使用所提出的尖峰分选感知损失进行训练。此外,我们提出了一种基于相似度的 K-均值聚类算法,通过观察余弦相似度来有条件地更新均值。改进的 K-均值算法表现出更好的收敛性,并能够实现更高分类准确性的在线聚类。我们使用高效的时分复用硬件架构在 40nmCMOS 工艺中实现了基于所提出算法的尖峰分选处理器。实验结果表明,该处理器在处理 16 个输入通道、7.68MHz 和 0.55V 时消耗 224.75μW/mm。我们的设计实现了 95.54%的聚类准确性,优于先前的尖峰分选处理器设计。