IEEE Trans Biomed Circuits Syst. 2021 Apr;15(2):351-364. doi: 10.1109/TBCAS.2021.3076147. Epub 2021 May 25.
Implantable brain machine interfaces for treatment of neurological disorders require on-chip, real-time signal processing of action potentials (spikes). In this work, we present the first spike sorting SoC with integrated neural recording front-end and analog unsupervised classifier. The event-driven, low power spike sorter features a novel hardware-optimized, K-means based algorithm that effectively eliminates duplicate clusters and is implemented using a novel clockless and ADC-less analog architecture. The 1.4 mm chip is fabricated in a 180-nm CMOS SOI process. The analog front-end achieves a 3.3 μV noise floor over the spike bandwidth (400 - 5000 Hz) and consumes 6.42 μW from a 1.5 V supply. The analog spike sorter consumes 4.35 μW and achieves 93.2% classification accuracy on a widely used synthetic test dataset. In addition, higher than 93% agreement between the chip classification result and that of a standard spike sorting software is observed using pre-recorded real neural signals. Simulations of the implemented spike sorter show robust performance under process-voltage-temperature variations.
用于治疗神经紊乱的可植入脑机接口需要对动作电位(尖峰)进行片上实时信号处理。在这项工作中,我们提出了第一款具有集成神经记录前端和模拟无监督分类器的尖峰分类 SoC。基于事件驱动的低功耗尖峰分类器采用了一种新颖的硬件优化的基于 K-均值的算法,该算法可有效地消除重复的簇,并使用新颖的无时钟和无 ADC 的模拟架构实现。该 1.4 毫米芯片采用 180nm CMOS SOI 工艺制造。模拟前端在尖峰带宽(400-5000Hz)内实现了 3.3μV 的噪声底,并在 1.5V 电源下消耗 6.42μW 的功率。模拟尖峰分类器消耗 4.35μW,在广泛使用的合成测试数据集上实现了 93.2%的分类准确率。此外,使用预记录的真实神经信号观察到,芯片分类结果与标准尖峰分类软件之间的一致性高于 93%。对实现的尖峰分类器的仿真表明,在工艺、电压和温度变化下具有稳健的性能。