Suppr超能文献

混沌游戏表示法及其在生物信息学中的应用。

Chaos game representation and its applications in bioinformatics.

作者信息

Löchel Hannah Franziska, Heider Dominik

机构信息

Department of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.

出版信息

Comput Struct Biotechnol J. 2021 Nov 10;19:6263-6271. doi: 10.1016/j.csbj.2021.11.008. eCollection 2021.

Abstract

Chaos game representation (CGR), a milestone in graphical bioinformatics, has become a powerful tool regarding alignment-free sequence comparison and feature encoding for machine learning. The algorithm maps a sequence to 2-dimensional space, while an extension of the CGR, the so-called frequency matrix representation (FCGR), transforms sequences of different lengths into equal-sized images or matrices. The CGR is a generalized Markov chain and includes various properties, which allow a unique representation of a sequence. Therefore, it has a broad spectrum of applications in bioinformatics, such as sequence comparison and phylogenetic analysis and as an encoding of sequences for machine learning. This review introduces the construction of CGRs and FCGRs, their applications on DNA and proteins, and gives an overview of recent applications and progress in bioinformatics.

摘要

混沌游戏表示法(CGR)是图形化生物信息学中的一个里程碑,已成为用于无比对序列比较和机器学习特征编码的强大工具。该算法将序列映射到二维空间,而CGR的一种扩展,即所谓的频率矩阵表示法(FCGR),则将不同长度的序列转换为大小相等的图像或矩阵。CGR是一种广义马尔可夫链,具有多种属性,能够对序列进行唯一表示。因此,它在生物信息学中有广泛的应用,如序列比较和系统发育分析,以及作为机器学习的序列编码。本文综述介绍了CGR和FCGR的构建、它们在DNA和蛋白质上的应用,并概述了生物信息学中近期的应用和进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e3/8636998/77f1aafc519c/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验