Suppr超能文献

混沌游戏表示法及其在生物信息学中的应用。

Chaos game representation and its applications in bioinformatics.

作者信息

Löchel Hannah Franziska, Heider Dominik

机构信息

Department of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.

出版信息

Comput Struct Biotechnol J. 2021 Nov 10;19:6263-6271. doi: 10.1016/j.csbj.2021.11.008. eCollection 2021.

Abstract

Chaos game representation (CGR), a milestone in graphical bioinformatics, has become a powerful tool regarding alignment-free sequence comparison and feature encoding for machine learning. The algorithm maps a sequence to 2-dimensional space, while an extension of the CGR, the so-called frequency matrix representation (FCGR), transforms sequences of different lengths into equal-sized images or matrices. The CGR is a generalized Markov chain and includes various properties, which allow a unique representation of a sequence. Therefore, it has a broad spectrum of applications in bioinformatics, such as sequence comparison and phylogenetic analysis and as an encoding of sequences for machine learning. This review introduces the construction of CGRs and FCGRs, their applications on DNA and proteins, and gives an overview of recent applications and progress in bioinformatics.

摘要

混沌游戏表示法(CGR)是图形化生物信息学中的一个里程碑,已成为用于无比对序列比较和机器学习特征编码的强大工具。该算法将序列映射到二维空间,而CGR的一种扩展,即所谓的频率矩阵表示法(FCGR),则将不同长度的序列转换为大小相等的图像或矩阵。CGR是一种广义马尔可夫链,具有多种属性,能够对序列进行唯一表示。因此,它在生物信息学中有广泛的应用,如序列比较和系统发育分析,以及作为机器学习的序列编码。本文综述介绍了CGR和FCGR的构建、它们在DNA和蛋白质上的应用,并概述了生物信息学中近期的应用和进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87e3/8636998/77f1aafc519c/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验