IEEE Trans Biomed Eng. 2022 Jun;69(6):2053-2064. doi: 10.1109/TBME.2021.3135305. Epub 2022 May 19.
The diagnosis and management of diabetes require frequent monitoring of blood sugar levels. Prolonged exposure of most of the monosaccharides in the bloodstream results in the glycation of hemoglobin. This glycated hemoglobin (HbA1c) based test plays an important role to avoid diabetic complications. However, noninvasive estimation of HbA1c is a very new, promising, and challenging topic in modern bioengineering scopes. The purpose of this study is to develop and verify mathematical models in order to quantify the glycated hemoglobin in-vivo percentage non-invasively. This research utilized photon diffusion theory to develop the finger models and genetic symbolic regression methods to solve the models to estimate the level of glycated hemoglobin in the blood. The validation of these models with human participants indicated a high degree of correlation (0.887 and 0.907 Pearson's r value), and high precision (2.56% and 2.96% coefficient of variation (%CV)) for transmission and reflection type noninvasive digital volume pulse-based signals. This research will be a breakthrough for the application of noninvasive HbA1c estimation.
糖尿病的诊断和管理需要频繁监测血糖水平。大多数血液中单糖的长时间暴露会导致血红蛋白糖化。这种基于糖化血红蛋白 (HbA1c) 的测试对于避免糖尿病并发症起着重要作用。然而,非侵入性地估计 HbA1c 是现代生物工程领域中一个非常新的、有前途的、具有挑战性的课题。本研究旨在开发和验证数学模型,以便无创地定量体内糖化血红蛋白的百分比。这项研究利用光子扩散理论来开发手指模型,并利用遗传符号回归方法来求解模型,以估计血液中糖化血红蛋白的水平。这些模型在人体参与者中的验证表明,它们具有高度的相关性(Pearson r 值为 0.887 和 0.907)和高精度(透射和反射式非侵入性数字体积脉搏信号的变异系数分别为 2.56%和 2.96%)。这项研究将是无创 HbA1c 估计应用的突破。