Suppr超能文献

TEA 驱动的 C、N 共掺杂超细 FeO 纳米颗粒用于高效三功能电极材料。

TEA driven C, N co-doped superfine FeO nanoparticles for efficient trifunctional electrode materials.

机构信息

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.

出版信息

J Colloid Interface Sci. 2022 Mar;609:249-259. doi: 10.1016/j.jcis.2021.11.182. Epub 2021 Dec 6.

Abstract

Poor conductivity is an obstacle that restricts the development of the electrochemistry performance of FeO. In this work, a novel carbon and nitrogen co-doped ultrafine FeO nanoparticles (CN-FeO) have been synthesized by triethylamine (TEA) induction and subsequent calcination. The addition of TEA could not only regulate the size of FeO nanoparticles, but also promote the formation of amorphous carbon layer. Well-designed CN-FeO heterostructures provide a highly interconnected porous conductive network, large heterogeneous interface area, large specific surface area and a large number of active sites, which greatly improve conductivity and promote electron transfer and electrolyte diffusion. The prepared CN-FeO electrode exhibits a high specific capacitance of 399.3 mF cm and good cycling stability. Meanwhile, CN-FeO catalyst exhibits excellent oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activities, with overpotentials of 136 and 281 mV at the current density of 10 mA cm, respectively. This work provides a promising approach for the design of high-performance anode materials for supercapacitors and provides profound implications for the development of catalysts with bifunctional catalytic activity.

摘要

导电性差是限制 FeO 电化学性能发展的一个障碍。在这项工作中,通过三乙胺(TEA)诱导和随后的煅烧,合成了一种新型的碳氮共掺杂的超细 FeO 纳米粒子(CN-FeO)。TEA 的添加不仅可以调节 FeO 纳米粒子的尺寸,还可以促进非晶态碳层的形成。精心设计的 CN-FeO 异质结构提供了高度互连的多孔导电网络、大的非均相界面面积、大的比表面积和大量的活性位点,这极大地提高了导电性,促进了电子转移和电解质的扩散。所制备的 CN-FeO 电极表现出 399.3 mF cm 的高比电容和良好的循环稳定性。同时,CN-FeO 催化剂表现出优异的析氧反应(OER)和析氢反应(HER)活性,在 10 mA cm 的电流密度下,过电势分别为 136 和 281 mV。这项工作为设计高性能超级电容器的阳极材料提供了一种有前途的方法,并为具有双功能催化活性的催化剂的发展提供了深刻的启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验