Bharti Dhiraj Kumar, Veeralingam Sushmitha, Badhulika Sushmee
Department of Electrical Engineering, Indian Institute of Technology Hyderabad, Hyderabad, 502285, India.
Mater Horiz. 2022 Feb 7;9(2):663-674. doi: 10.1039/d1mh01606g.
Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue that restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic, flexible triboelectric nanogenerator based on bismuth tungstate (BiWO):polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE)) is fabricated. A hydrothermal technique is used to synthesize highly crystalline BiWO nanoparticles that are then incorporated inside the P(VDF-TrFE) matrix nanofiber mat using electrospinning over an aluminum-coated PET substrate to yield a nanogenerator with a device configuration of Cu-coated PET/(BiWO:P(PVDF-TrFE)) nanofiber mat/Al-coated PET. The highly crystalline nature of the biconcave shaped BiWO nanoparticles and β - P(VDF-TrFE) is confirmed by X-ray powder diffraction (XRD) and Raman spectroscopic techniques. The dielectric constant of the BiWO:P(PVDF-TrFE) nanofiber mat was studied and a high dielectric constant of 44 was observed. The as-fabricated nanogenerator delivers a very high output voltage (open circuit) of 205 V and current density (short circuit) of 11.91 mA m at ∼0.15 kgf without any electric poling, which is higher than all the prior reports in this field. The fabricated nanogenerator possesses very high output stability and ultra-sensitivity with a swift response time of 60 ms. This outstanding performance of the nanogenerator can be ascribed to the synergistic combination of the β-phase P(VDF-TrFE) polymer and non-centrosymmetric nature of BiWO nanoparticles. Furthermore, a BiWO-based pH sensor is driven by the energy obtained from the as-fabricated nanogenerator and the real time demonstration of the nanogenerator powering a calculator is also demonstrated. The strategy outlined here presents a cost-effective, high performance alternative for driving various portable bio-compatible self-powered electronic devices.
从摩擦电纳米发电机获得可持续的高输出电源仍然是一个主要问题,这限制了它们在自供电电子应用中的广泛使用。在这项工作中,制备了一种基于钨酸铋(BiWO):聚偏二氟乙烯-三氟乙烯(P(VDF-TrFE))的超高性能、无毒、柔性摩擦电纳米发电机。采用水热技术合成高度结晶的BiWO纳米颗粒,然后通过静电纺丝将其掺入P(VDF-TrFE)基质纳米纤维垫中,并覆盖在铝涂层PET基板上,以制备具有Cu涂层PET/(BiWO:P(PVDF-TrFE))纳米纤维垫/Al涂层PET器件结构的纳米发电机。通过X射线粉末衍射(XRD)和拉曼光谱技术证实了双凹形BiWO纳米颗粒和β-P(VDF-TrFE)的高度结晶性质。研究了BiWO:P(PVDF-TrFE)纳米纤维垫的介电常数,观察到其具有44的高介电常数。所制备的纳米发电机在约0.15 kgf的力下无需任何电极化即可提供205 V的非常高的输出电压(开路)和11.91 mA m的电流密度(短路),这高于该领域之前的所有报道。所制备的纳米发电机具有非常高的输出稳定性和超灵敏度,响应时间迅速,为60 ms。这种纳米发电机的出色性能可归因于β相P(VDF-TrFE)聚合物与BiWO纳米颗粒的非中心对称性质的协同组合。此外,基于BiWO的pH传感器由所制备的纳米发电机获得的能量驱动,并且还展示了纳米发电机为计算器供电的实时演示。这里概述的策略为驱动各种便携式生物兼容自供电电子设备提供了一种经济高效的高性能替代方案。