Suppr超能文献

具有由高度支化聚合物网络衍生的膨胀石墨层间的硬碳微球作为实用钠离子电池的超高性能阳极。

Hard Carbon Microsphere with Expanded Graphitic Interlayers Derived from a Highly Branched Polymer Network as Ultrahigh Performance Anode for Practical Sodium-Ion Batteries.

作者信息

Zhang Huimin, Zhang Wenfeng, Huang Fuqiang

机构信息

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.

Beijing Key Laboratory of Advanced Chemical Energy Storage Technology and Materials, Research Institute of Chemical Defense, Beijing 100191, China.

出版信息

ACS Appl Mater Interfaces. 2021 Dec 29;13(51):61180-61188. doi: 10.1021/acsami.1c19199. Epub 2021 Dec 16.

Abstract

Growing attention has been attached to hard carbon in sodium-ion batteries (SIBs). However, hard carbon from individual precursors tends to exhibit an inferior rate capability due to its limited interlayer distance. Here, a coupled strategy is designed to prepare hard carbon microspheres (HCMSs) via the pyrolysis of a highly branched polymer network formed instantaneously between two interactive precursors during the atomization of the spray drying process. The combined precursors with a tunable cross-linked structure prefer to generate a large interlayer spacing (0.399 nm) and abundant closed pore structure by suppressing the graphitization of precursors during the carbonization, relative to the individual precursor, which contributes greatly to the ion diffusion kinetics. Benefiting from the unique structure, HCMS exhibits an impressively high reversible specific capacity of 373.4 mA h g in SIBs and high initial Coulombic efficiency of 88%, retaining 90.2% of the initial capacity even after 150 cycles, which presented comparable capacities with commercial graphite in lithium-ion batteries. Besides, excellent rate capability was also demonstrated with HCMSs (250 and 117 mA h g at 300 and 600 mA g). Notably, the interlayer distance and closed pore structure are tunable just by adjusting the ratio of the two precursors. The tunable and extendable fabrication process, together with its amazing high carbon yield of 48 wt % (1400 °C) and high tap density close to 0.8 g cm, makes this strategy promising in the practical application for SIBs.

摘要

钠离子电池(SIBs)中的硬碳越来越受到关注。然而,由单一前驱体制备的硬碳由于其层间距有限,往往表现出较差的倍率性能。在此,设计了一种耦合策略,通过在喷雾干燥过程雾化期间,由两种相互作用的前驱体之间瞬间形成的高度支化聚合物网络热解来制备硬碳微球(HCMSs)。与单一前驱体相比,具有可调交联结构的复合前驱体在碳化过程中通过抑制前驱体的石墨化,更倾向于产生较大的层间距(0.399 nm)和丰富的闭孔结构,这对离子扩散动力学有很大贡献。受益于独特的结构,HCMS在SIBs中表现出令人印象深刻的373.4 mA h g的高可逆比容量和88%的高初始库仑效率,即使在150次循环后仍保留初始容量的90.2%,这与锂离子电池中的商业石墨具有相当的容量。此外,HCMSs也展示了优异的倍率性能(在300和600 mA g时分别为250和117 mA h g)。值得注意的是,仅通过调整两种前驱体的比例就可以调节层间距和闭孔结构。这种可调节和可扩展的制备工艺,连同其在1400℃时惊人的48 wt%的高碳产率和接近0.8 g cm的高振实密度,使得该策略在SIBs的实际应用中具有前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验