Suppr超能文献

[听觉上行通路中听觉反应信噪比的演变]

[Evolution of auditory response signal-to-noise ratio in ascending auditory pathways].

作者信息

Wang J, Song C, Liang F

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2021 Nov 20;41(11):1712-1718. doi: 10.12122/j.issn.1673-4254.2021.11.17.

Abstract

OBJECTIVE

To explore the characteristics of the evolution of auditory response signal-to-noise ratio at all levels of the ascending auditory pathway, its modulation by different brain states in different brain regions, and its potential value as an effective indicator for encoding sound characteristics.

METHODS

Eighty C57BL/6J awake mice were used for recording the best frequency auditory response of the neurons in the inferior colliculus (=20), medial geniculate body (=20), and primary auditory cortex using a glass microelectrode. The probability density of spontaneous and evoked firing of the neurons was calculated to establish a distribution model of spontaneous and evoked firing, and the evolution of the auditory response signal-to-noise ratio was statistically analyzed. The changes in spontaneous and evoked firing of the neurons and the auditory response signal-to-noise ratio in different brain regions were analyzed at rest and during running.

RESULTS

In different brain regions in the ascending auditory pathway, the spontaneous firing of the neurons all showed a Poisson distribution, and the evoked firing showed a lognormal distribution. The auditory response signal-to-noise ratio was significantly greater in the inferior colliculus than in the medial geniculate body and auditory cortex ( < 0.001). The auditory response signal-to-noise ratio in the 3 brain regions remained stable irrespective of the states of motion (>0.05).

CONCLUSION

Auditory response signal-to-noise ratio may serve as an effective indicator of encoding sound characteristics.

摘要

目的

探讨听觉传导通路各级水平听觉反应信噪比的演变特征、不同脑区不同脑状态对其的调制作用以及其作为编码声音特征有效指标的潜在价值。

方法

使用80只C57BL/6J清醒小鼠,用玻璃微电极记录下丘(=20)、内侧膝状体(=20)和初级听觉皮层神经元的最佳频率听觉反应。计算神经元自发和诱发放电的概率密度,建立自发和诱发放电的分布模型,并对听觉反应信噪比的演变进行统计学分析。分析静止和跑步时不同脑区神经元自发和诱发放电以及听觉反应信噪比的变化。

结果

在听觉传导通路的不同脑区,神经元的自发放电均呈泊松分布,诱发放电呈对数正态分布。下丘的听觉反应信噪比显著高于内侧膝状体和听觉皮层(<0.001)。无论运动状态如何,3个脑区的听觉反应信噪比均保持稳定(>0.05)。

结论

听觉反应信噪比可能是编码声音特征的有效指标。

相似文献

1
[Evolution of auditory response signal-to-noise ratio in ascending auditory pathways].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Nov 20;41(11):1712-1718. doi: 10.12122/j.issn.1673-4254.2021.11.17.
2
[Neural mechanism for modulation of auditory response of the striatum by locomotion].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 May 20;42(5):766-771. doi: 10.12122/j.issn.1673-4254.2022.05.20.
3
[Effects of background noise on auditory response characteristics of primary auditory cortex neurons in awake mice].
Nan Fang Yi Ke Da Xue Xue Bao. 2021 Nov 20;41(11):1672-1679. doi: 10.12122/j.issn.1673-4254.2021.11.11.
5
Transformation of spatial sensitivity along the ascending auditory pathway.
J Neurophysiol. 2015 May 1;113(9):3098-111. doi: 10.1152/jn.01029.2014. Epub 2015 Mar 4.
8
Noise trauma induced plastic changes in brain regions outside the classical auditory pathway.
Neuroscience. 2016 Feb 19;315:228-45. doi: 10.1016/j.neuroscience.2015.12.005. Epub 2015 Dec 14.

引用本文的文献

1
A Spectrum of Intraoperative and Postoperative Complications of Cochlear Implants: A Critical Review.
Cureus. 2022 Aug 18;14(8):e28151. doi: 10.7759/cureus.28151. eCollection 2022 Aug.
2
[Neural mechanism for modulation of auditory response of the striatum by locomotion].
Nan Fang Yi Ke Da Xue Xue Bao. 2022 May 20;42(5):766-771. doi: 10.12122/j.issn.1673-4254.2022.05.20.

本文引用的文献

1
Weakly correlated activity of pallidal neurons in behaving monkeys.
Eur J Neurosci. 2021 Apr;53(7):2178-2191. doi: 10.1111/ejn.14903. Epub 2020 Jul 27.
2
Ultrafast Two-Photon Imaging of a High-Gain Voltage Indicator in Awake Behaving Mice.
Cell. 2019 Dec 12;179(7):1590-1608.e23. doi: 10.1016/j.cell.2019.11.004.
5
Action and learning shape the activity of neuronal circuits in the visual cortex.
Curr Opin Neurobiol. 2018 Oct;52:88-97. doi: 10.1016/j.conb.2018.04.020. Epub 2018 May 1.
6
Activity in Human Auditory Cortex Represents Spatial Separation Between Concurrent Sounds.
J Neurosci. 2018 May 23;38(21):4977-4984. doi: 10.1523/JNEUROSCI.3323-17.2018. Epub 2018 Apr 30.
7
Learning Midlevel Auditory Codes from Natural Sound Statistics.
Neural Comput. 2018 Mar;30(3):631-669. doi: 10.1162/neco_a_01048. Epub 2017 Dec 8.
8
Sublaminar Subdivision of Mouse Auditory Cortex Layer 2/3 Based on Functional Translaminar Connections.
J Neurosci. 2017 Oct 18;37(42):10200-10214. doi: 10.1523/JNEUROSCI.1361-17.2017. Epub 2017 Sep 20.
9
Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
J Neurosci. 2016 Dec 7;36(49):12338-12350. doi: 10.1523/JNEUROSCI.4648-15.2016.
10
Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status.
Neurosci Lett. 2017 Jan 1;636:258-264. doi: 10.1016/j.neulet.2016.11.020. Epub 2016 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验