Suppr超能文献

基于功能性跨层连接对小鼠听觉皮层第2/3层进行板下细分

Sublaminar Subdivision of Mouse Auditory Cortex Layer 2/3 Based on Functional Translaminar Connections.

作者信息

Meng Xiangying, Winkowski Daniel E, Kao Joseph P Y, Kanold Patrick O

机构信息

Department of Biology, University of Maryland, College Park, Maryland 20742, and.

Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201.

出版信息

J Neurosci. 2017 Oct 18;37(42):10200-10214. doi: 10.1523/JNEUROSCI.1361-17.2017. Epub 2017 Sep 20.

Abstract

The cerebral cortex is subdivided into six layers based on morphological features. The supragranular layers 2/3 (L2/3) contain morphologically and genetically diverse populations of neurons, suggesting the existence of discrete classes of cells. In primates and carnivores L2/3 can be subdivided morphologically, but cytoarchitectonic divisions are less clear in rodents. Nevertheless, discrete classes of cells could exist based on their computational requirement, which might be linked to their associated functional microcircuits. Through slice recordings coupled with laser-scanning photostimulation we investigated whether L2/3 of male mouse auditory cortex contains discrete subpopulations of cells with specific functional microcircuits. We use hierarchical clustering on the laminar connection patterns to reveal the existence of multiple distinct classes of L2/3 neurons. The classes of L2/3 neurons are distinguished by the pattern of their laminar and columnar inputs from within A1 and their location within L2/3. Cells in superficial L2 show more extensive columnar integration than deeper L3 cells. Moreover, L3 cells receive more translaminar input from L4. imaging in awake mice revealed that L2 cells had higher bandwidth than L3 cells, consistent with the laminar differences in columnar integration. These results suggest that similar to higher mammals, rodent L2/3 is not a homogenous layer but contains several parallel microcircuits. Layer 2/3 of auditory cortex is functionally diverse. We investigated whether L2/3 cells form classes based on their functional connectivity. We used whole-cell patch-clamp recordings with laser-scanning photostimulation and performed unsupervised clustering on the resulting excitatory and inhibitory connection patterns. Cells within each class were located in different sublaminae. Superficial cells showed wider integration along the tonotopic axis and the amount of L4 input varied with sublaminar location. To identify whether sensory responses varied with sublaminar location, we performed Ca imaging and found that L2 cells were less frequency-selective than L3 cells. Our results show that the diversity of receptive fields in L2/3 is likely due to diversity in the underlying functional circuits.

摘要

大脑皮层根据形态学特征可细分为六层。颗粒上层2/3(L2/3)包含形态和基因多样的神经元群体,这表明存在不同类别的细胞。在灵长类动物和食肉动物中,L2/3在形态上可进一步细分,但在啮齿动物中细胞结构划分不太明确。然而,基于其计算需求,可能存在不同类别的细胞,这可能与其相关的功能微电路有关。通过结合激光扫描光刺激的切片记录,我们研究了雄性小鼠听觉皮层的L2/3是否包含具有特定功能微电路的离散细胞亚群。我们对层状连接模式进行分层聚类,以揭示多个不同类别的L2/3神经元的存在。L2/3神经元的类别通过它们从A1内部的层状和柱状输入模式以及它们在L2/3内的位置来区分。浅层L2中的细胞比深层L3中的细胞表现出更广泛的柱状整合。此外,L3细胞从L4接收更多的跨层输入。清醒小鼠的成像显示,L2细胞的带宽高于L3细胞,这与柱状整合中的层状差异一致。这些结果表明,与高等哺乳动物类似,啮齿动物的L2/3不是一个均匀的层,而是包含几个并行的微电路。听觉皮层的第2/3层功能多样。我们研究了L2/3细胞是否根据其功能连接形成类别。我们使用全细胞膜片钳记录结合激光扫描光刺激,并对由此产生的兴奋性和抑制性连接模式进行无监督聚类。每个类别中的细胞位于不同的亚层。浅层细胞在音调轴上显示出更广泛的整合,并且L4输入的量随亚层位置而变化。为了确定感觉反应是否随亚层位置而变化,我们进行了钙成像,发现L2细胞的频率选择性低于L3细胞。我们的结果表明,L2/3中感受野的多样性可能是由于潜在功能电路的多样性。

相似文献

1
Sublaminar Subdivision of Mouse Auditory Cortex Layer 2/3 Based on Functional Translaminar Connections.
J Neurosci. 2017 Oct 18;37(42):10200-10214. doi: 10.1523/JNEUROSCI.1361-17.2017. Epub 2017 Sep 20.
5
The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits.
Nat Neurosci. 2010 Nov;13(11):1413-20. doi: 10.1038/nn.2659. Epub 2010 Oct 17.
7
Intracortical Circuits in Thalamorecipient Layers of Auditory Cortex Refine after Visual Deprivation.
eNeuro. 2017 Apr 6;4(2). doi: 10.1523/ENEURO.0092-17.2017. eCollection 2017 Mar-Apr.
8
Spatial pattern of intra-laminar connectivity in supragranular mouse auditory cortex.
Front Neural Circuits. 2014 Mar 11;8:15. doi: 10.3389/fncir.2014.00015. eCollection 2014.
10
Spatial organization of excitatory synaptic inputs to layer 4 neurons in mouse primary auditory cortex.
Front Neural Circuits. 2015 Apr 29;9:17. doi: 10.3389/fncir.2015.00017. eCollection 2015.

引用本文的文献

2
Primary auditory thalamus relays directly to cortical layer 1 interneurons.
iScience. 2025 Jun 24;28(8):112652. doi: 10.1016/j.isci.2025.112652. eCollection 2025 Aug 15.
3
Patchy harmonic functional connectivity of the mouse auditory cortex.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2510012122. doi: 10.1073/pnas.2510012122. Epub 2025 Jun 30.
4
Specific functional connectivity of molecular subtypes of subplate and layer 6b neurons.
J Neurosci. 2025 Mar 14;45(18). doi: 10.1523/JNEUROSCI.2094-24.2025.
6
Differential Encoding of Two-Tone Harmonics in the Male and Female Mouse Auditory Cortex.
J Neurosci. 2024 Oct 30;44(44):e0364242024. doi: 10.1523/JNEUROSCI.0364-24.2024.
7
Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain.
Neurosci Bull. 2025 Feb;41(2):224-242. doi: 10.1007/s12264-024-01296-x. Epub 2024 Sep 15.
8
Fractured columnar small-world functional network organization in volumes of L2/3 of mouse auditory cortex.
PNAS Nexus. 2024 Feb 12;3(2):pgae074. doi: 10.1093/pnasnexus/pgae074. eCollection 2024 Feb.
9
Long-term training alters response dynamics in the aging auditory cortex.
Hear Res. 2024 Mar 15;444:108965. doi: 10.1016/j.heares.2024.108965. Epub 2024 Jan 28.
10
Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice.
Hear Res. 2023 Mar 1;429:108685. doi: 10.1016/j.heares.2022.108685. Epub 2022 Dec 27.

本文引用的文献

2
Ncm, a Photolabile Group for Preparation of Caged Molecules: Synthesis and Biological Application.
PLoS One. 2016 Oct 3;11(10):e0163937. doi: 10.1371/journal.pone.0163937. eCollection 2016.
3
Auditory cortical field coding long-lasting tonal offsets in mice.
Sci Rep. 2016 Sep 30;6:34421. doi: 10.1038/srep34421.
5
Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex.
Science. 2016 Jun 10;352(6291):1319-22. doi: 10.1126/science.aad3358.
6
Visual Deprivation Causes Refinement of Intracortical Circuits in the Auditory Cortex.
Cell Rep. 2015 Aug 11;12(6):955-64. doi: 10.1016/j.celrep.2015.07.018. Epub 2015 Jul 30.
7
Removable cranial windows for long-term imaging in awake mice.
Nat Protoc. 2014 Nov;9(11):2515-2538. doi: 10.1038/nprot.2014.165. Epub 2014 Oct 2.
8
Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex.
Neuron. 2014 Aug 20;83(4):944-59. doi: 10.1016/j.neuron.2014.07.009. Epub 2014 Jul 31.
9
Local versus global scales of organization in auditory cortex.
Trends Neurosci. 2014 Sep;37(9):502-10. doi: 10.1016/j.tins.2014.06.003. Epub 2014 Jul 4.
10
Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex.
J Neurosci. 2014 Jun 25;34(26):8855-64. doi: 10.1523/JNEUROSCI.0233-14.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验