Suppr超能文献

生态进化分析揭示海洋细菌科“Psychromonadaceae”中维生素 B 代谢的分歧进化。

Eco-phylogenetic analyses reveal divergent evolution of vitamin B metabolism in the marine bacterial family 'Psychromonadaceae'.

机构信息

Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.

CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.

出版信息

Environ Microbiol Rep. 2022 Feb;14(1):147-163. doi: 10.1111/1758-2229.13036. Epub 2021 Dec 18.

Abstract

Cobalamin (vitamin B ) is an essential micronutrient required by both prokaryotes and eukaryotes. Nevertheless, with high genetic and metabolic cost, de novo cobalamin biosynthesis is exclusive to a subset of prokaryotic taxa. Many Cyanobacterial and Archaeal taxa have been implicated in de novo cobalamin biosynthesis in epi- and mesopelagic ocean respectively. However, the contributions of Gammaproteobacteria particularly the family 'Psychromonadaceae' is largely unknown. Through phylo-pangenomic analyses using concatenated single-copy proteins and homologous gene clusters respectively, the phylogenies within 'Psychromonadaceae' recapitulate both their taxonomic delineations and environmental distributions. Moreover, uneven distribution of cobalamin de novo biosynthetic operon and cobalamin-dependent light-responsive regulon were observed, and of which the linkages to the environmental conditions where cobalamin availability and light regime can be varied respectively were discussed, suggesting the impacts of ecological divergence in shaping their disparate cobalamin-related metabolisms. Functional analysis demonstrated a varying degree of cobalamin dependency for both central metabolic processes and cobalamin-mediated light-responsive regulation, and underlying sequence characteristics of cis- and trans-regulatory elements were revealed. Our findings emphasized the potential roles of cobalamin in shaping the ecological distributions and driving the metabolic evolution in the marine bacterial family 'Psychromonadaceae', and have further implications for an improved understanding of nutritional interdependencies and community metabolism modulated by cobalamin.

摘要

钴胺素(维生素 B )是原核生物和真核生物都需要的必需微量营养素。然而,由于其具有很高的遗传和代谢成本,从头合成钴胺素是原核生物中一部分类群所特有的。许多蓝细菌和古细菌类群分别与深海和中层海洋中的从头合成钴胺素有关。然而,γ-变形菌,特别是 Psychromonadaceae 家族在这方面的贡献在很大程度上尚不清楚。通过使用串联单拷贝蛋白和同源基因簇进行系统发育泛基因组分析,分别对 Psychromonadaceae 内的系统发育进行了分类和环境分布的描述。此外,还观察到了钴胺素从头生物合成操纵子和钴胺素依赖的光响应调控子的不均匀分布,并且讨论了它们与钴胺素可用性和光照条件变化的环境条件之间的联系,这表明生态差异在塑造它们不同的钴胺素相关代谢方面的影响。功能分析表明,中央代谢过程和钴胺素介导的光响应调节都存在不同程度的钴胺素依赖性,并且揭示了顺式和反式调节元件的潜在序列特征。我们的研究结果强调了钴胺素在塑造海洋细菌家族 Psychromonadaceae 的生态分布和驱动代谢进化方面的潜在作用,并进一步阐明了钴胺素对营养相互依存关系和群落代谢的调节作用。

相似文献

1
Eco-phylogenetic analyses reveal divergent evolution of vitamin B metabolism in the marine bacterial family 'Psychromonadaceae'.
Environ Microbiol Rep. 2022 Feb;14(1):147-163. doi: 10.1111/1758-2229.13036. Epub 2021 Dec 18.
2
Two distinct pools of B12 analogs reveal community interdependencies in the ocean.
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):364-369. doi: 10.1073/pnas.1608462114. Epub 2016 Dec 27.
4
Cobalamin producers and prokaryotic consumers in the Northwest Atlantic.
Environ Microbiol. 2023 Jul;25(7):1300-1313. doi: 10.1111/1462-2920.16363. Epub 2023 Mar 14.
5
Utilization of cobalamin is ubiquitous in early-branching fungal phyla.
Genome Biol Evol. 2021 Apr 5;13(4). doi: 10.1093/gbe/evab043.
6
Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production.
ISME J. 2015 Feb;9(2):461-71. doi: 10.1038/ismej.2014.142. Epub 2014 Aug 15.
7
Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes.
J Biol Chem. 2003 Oct 17;278(42):41148-59. doi: 10.1074/jbc.M305837200. Epub 2003 Jul 17.
9
Functional redundancy of seasonal vitamin B biosynthesis pathways in coastal marine microbial communities.
Environ Microbiol. 2023 Dec;25(12):3753-3770. doi: 10.1111/1462-2920.16545. Epub 2023 Nov 30.
10
Elucidation of roles for vitamin B in regulation of folate, ubiquinone, and methionine metabolism.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):E1205-E1214. doi: 10.1073/pnas.1612360114. Epub 2017 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验