Suppr超能文献

最后共同祖先中钴胺素生物合成的证据。

Evidence for corrin biosynthesis in the last universal common ancestor.

作者信息

Modjewski Luca D, Karavaeva Val, Mrnjavac Natalia, Knopp Michael, Martin William F, Sousa Filipa L

机构信息

Institute of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.

Department of Functional and Evolutionary Ecology, University of Vienna, Austria.

出版信息

FEBS J. 2025 Feb;292(4):827-850. doi: 10.1111/febs.17367. Epub 2024 Dec 21.

Abstract

Corrinoids are cobalt-containing tetrapyrroles. They include adenosylcobalamin (vitamin B) and cobamides that function as cofactors and coenzymes for methyl transfer, radical-dependent and redox reactions. Though cobamides are the most complex cofactors in nature, they are essential in the acetyl-CoA pathway, thought to be the most ancient CO-fixation pathway, where they perform a pterin-to-cobalt-to-nickel methyl transfer reaction catalyzed by the corrinoid iron-sulphur protein (CoFeS). CoFeS occurs in H-dependent archaeal methanogens, the oldest microbial lineage by measure of physiology and carbon isotope data, dating corrinoids to ca. 3.5 billion years. However, CoFeS and cobamides are also essential in the acetyl-CoA pathway of H-dependent bacterial acetogens. To determine whether corrin biosynthesis was established before archaea and bacteria diverged, whether the pathways arose independently or whether cobamide biosynthesis was transferred from the archaeal to the bacterial lineage (or vice versa) during evolution, we investigated phylogenies and structural data for 26 enzymes of corrin ring and lower ligand biosynthesis. The data trace cobamide synthesis to the common ancestor of bacteria and archaea, placing it in the last universal common ancestor of all lifeforms (LUCA), while pterin-dependent methyl synthesis pathways likely arose independently post-LUCA in the lineages leading to bacteria and archaea. Enzymes of corrin biosynthesis were recruited from preexisting ancient pathways. Evolutionary forerunners of CoFeS function were likely Fe-, Ni- and Co-containing solid-state surfaces, which, in the laboratory, catalyze the reactions of the acetyl-CoA pathway from CO to pyruvate under serpentinizing hydrothermal conditions. The data suggest that enzymatic corrin biosynthesis replaced insoluble solid-state catalysts that tethered primordial CO assimilation to the Earth's crust, suggesting a role for corrin synthesis in the origin of free-living cells.

摘要

类咕啉是含钴的四吡咯。它们包括腺苷钴胺素(维生素B12)和钴胺酰胺,这些物质作为甲基转移、自由基依赖性反应和氧化还原反应的辅助因子和辅酶发挥作用。尽管钴胺酰胺是自然界中最复杂的辅助因子,但它们在乙酰辅酶A途径中至关重要,乙酰辅酶A途径被认为是最古老的碳固定途径,在该途径中,它们通过类咕啉铁硫蛋白(CoFeS)催化蝶呤到钴再到镍的甲基转移反应。CoFeS存在于依赖氢气的古生菌产甲烷菌中,从生理学和碳同位素数据来看,这是最古老的微生物谱系,将类咕啉的出现追溯到约35亿年前。然而,CoFeS和钴胺酰胺在依赖氢气的细菌产乙酸菌的乙酰辅酶A途径中也必不可少。为了确定类咕啉生物合成是在古菌和细菌分化之前就已确立,这些途径是独立出现的,还是在进化过程中钴胺酰胺生物合成从古菌谱系转移到细菌谱系(反之亦然),我们研究了参与类咕啉环和低级配体生物合成的26种酶的系统发育和结构数据。数据将钴胺酰胺的合成追溯到细菌和古菌的共同祖先,将其置于所有生命形式的最后一个共同祖先(LUCA)中,而依赖蝶呤的甲基合成途径可能在LUCA之后在导致细菌和古菌的谱系中独立出现。类咕啉生物合成的酶是从先前存在的古老途径中招募而来的。CoFeS功能的进化先驱可能是含铁、镍和钴的固态表面,在实验室中,这些表面在蛇纹石化热液条件下催化从一氧化碳到丙酮酸的乙酰辅酶A途径反应。数据表明,酶促类咕啉生物合成取代了将原始一氧化碳同化与地壳相连的不溶性固态催化剂,这表明类咕啉合成在自由生活细胞的起源中发挥了作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecc6/11839935/e8f4827a59e5/FEBS-292-827-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验