Department of Biological Environment, Kangwon National University, Chuncheon, Gangwondo 24341, Republic of Korea.
Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea.
Bioresour Technol. 2022 Mar;347:126579. doi: 10.1016/j.biortech.2021.126579. Epub 2021 Dec 16.
Electroactive microorganisms acting as microbial electrocatalysts have intrinsic metabolisms that mediate a redox potential difference between solid electrodes and microbes, leading to spontaneous electron transfer to the electrode (exo-electron transfer) or electron uptake from the electrode (endo-electron transfer). These microbes biochemically convert various organic and/or inorganic compounds to electricity and/or biochemicals in bioelectrochemical systems (BESs) such as microbial fuel cells (MFCs) and microbial electrosynthesis cells (MECs). For the past two decades, intense studies have converged to clarify electron transfer mechanisms of electroactive microbes in BESs, which thereby have led to improved bioelectrochemical performance. Also, many novel exoelectrogenic eukaryotes as well as prokaryotes with electroactive properties are being continuously discovered. This review presents an overview of electroactive microorganisms (bacteria, microalgae and fungi) and their exo- and endo-electron transfer mechanisms in BESs for optimizing and advancing bioelectrochemical techniques.
作为微生物电催化剂的电活性微生物具有内在代谢作用,可以在固-液电极和微生物之间介导氧化还原电位差,从而导致电子自发地向电极转移(外电子转移)或从电极摄取电子(内电子转移)。这些微生物在生物电化学系统(BES)中,如微生物燃料电池(MFC)和微生物电解池(MEC)中,将各种有机和/或无机化合物生物化学转化为电能和/或生化物质。在过去的二十年中,大量研究集中于阐明 BES 中电活性微生物的电子转移机制,从而提高了生物电化学性能。此外,还不断发现许多具有电活性的新型真核外生菌以及原核生物。本文综述了电活性微生物(细菌、微藻和真菌)及其在 BES 中的外电子和内电子转移机制,以优化和推进生物电化学技术。