Li Faying, Benetti Daniele, Zhang Min, Feng Jinhui, Wei Qin, Rosei Federico
Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, 1650 Boul. Lionel Boulet, J3X 1S2 Varennes, Québec, Canada.
Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China.
Small Methods. 2021 Aug;5(8):e2100109. doi: 10.1002/smtd.202100109. Epub 2021 Jun 23.
Photoelectrochemical (PEC) solar-driven hydrogen production is a promising route to convert solar energy into chemical energy using semiconductors as active materials. However, the performance is still far from satisfactory due to a limited absorption range and rapid charge recombination. Compared to 3D semiconductors, 0D/2D nanohybrids may exhibit better PEC performance, due to the formation of an intimate interface between the two semiconductors that can inhibit carrier recombination. Herein, a photoelectrode based on a 0D/2D heterojunction is constructed by 0D metal chalcogenide quantum dots (QDs) and hierarchical 2D Zn-MoS nanosheets (NSs). The effect of PbS, CdS, and their composite PbS@CdS QDs is analyzed by depositing them onto Zn-MoS NSs using an in situ process. This distinctive heterojunction can leverage the light harvesting capabilities of QDs with the catalytic performance of Zn-MoS . Compared to Zn-MoS , Zn-MoS /PbS, and Zn-MoS /CdS, the obtained 0D/2D heterostructure based on the composite Zn-MoS /PbS@CdS has a significantly enhanced photocurrent. The synergistic effect between 0D/2D heterojunction, the extended absorption range of QDs, and the strong coupling and band alignment between them lead to superior solar-driven PEC performance. This work can provide a new platform to construct multifunctional 0D/2D nanohybrids for optoelectronic applications, not limited to PEC devices.
光电化学(PEC)太阳能驱动制氢是一种利用半导体作为活性材料将太阳能转化为化学能的很有前景的途径。然而,由于吸收范围有限和电荷快速复合,其性能仍远不能令人满意。与三维半导体相比,零维/二维纳米杂化物可能表现出更好的PEC性能,这是因为两种半导体之间形成了紧密的界面,能够抑制载流子复合。在此,基于零维金属硫族化物量子点(QDs)和分级二维Zn-MoS纳米片(NSs)构建了一种基于零维/二维异质结的光电极。通过原位法将硫化铅、硫化镉及其复合硫化铅@硫化镉量子点沉积到Zn-MoS纳米片上,分析了它们的效果。这种独特的异质结可以利用量子点的光捕获能力和Zn-MoS的催化性能。与Zn-MoS、Zn-MoS/PbS和Zn-MoS/CdS相比,基于复合Zn-MoS/PbS@CdS获得的零维/二维异质结构具有显著增强的光电流。零维/二维异质结、量子点扩展的吸收范围以及它们之间强烈的耦合和能带排列之间的协同效应导致了优异的太阳能驱动PEC性能。这项工作可以为构建用于光电子应用的多功能零维/二维纳米杂化物提供一个新平台,不限于PEC器件。