Zhu Phillip, Franklin Rachel, Vogel Amber, Stanisheuski Stanislau, Reardon Patrick, Sluchanko Nikolai N, Beckman Joseph S, Karplus P Andrew, Mehl Ryan A, Cooley Richard B
Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331.
Oregon State University, Department of Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, Oregon 97331.
bioRxiv. 2021 Dec 14:2021.10.22.465468. doi: 10.1101/2021.10.22.465468.
Installing stable, functional mimics of phosphorylated amino acids into proteins offers a powerful strategy to study protein regulation. Previously, a genetic code expansion (GCE) system was developed to translationally install non-hydrolyzable phosphoserine (nhpSer), with the γ-oxygen replaced with carbon, but it has seen limited usage. Here, we achieve a 40-fold improvement in this system by engineering into a biosynthetic pathway that produces nhpSer from the central metabolite phosphoenolpyruvate. Using this "PermaPhos " system - an autonomous 21-amino acid expression system for incorporating nhpSer into target proteins - we show that nhpSer faithfully mimics the effects of phosphoserine in three stringent test cases: promoting 14-3-3/client complexation, disrupting 14-3-3 dimers, and activating GSK3β phosphorylation of the SARS-CoV-2 nucleocapsid protein. This facile access to nhpSer containing proteins should allow nhpSer to replace Asp and Glu as the go-to pSer phosphomimetic for proteins produced in .
将稳定、功能性的磷酸化氨基酸模拟物引入蛋白质中,为研究蛋白质调控提供了一种强大的策略。此前,人们开发了一种遗传密码扩展(GCE)系统,用于翻译安装不可水解的磷酸丝氨酸(nhpSer),其中γ-氧被碳取代,但该系统的应用有限。在此,我们通过改造一条从中心代谢物磷酸烯醇丙酮酸生成nhpSer的生物合成途径,使该系统的效率提高了40倍。使用这种“PermaPhos”系统——一种用于将nhpSer掺入目标蛋白质的自主21氨基酸表达系统——我们表明,在三个严格的测试案例中,nhpSer忠实地模拟了磷酸丝氨酸的作用:促进14-3-3/客户蛋白复合物形成、破坏14-3-3二聚体以及激活SARS-CoV-2核衣壳蛋白的GSK3β磷酸化。这种轻松获得含nhpSer蛋白质的方法应该能让nhpSer取代天冬氨酸和谷氨酸,成为在[具体环境未提及]中生产的蛋白质的首选磷酸丝氨酸模拟物。